Book Name | : Ganit Prakash |
Subject | : Mathematics (Maths) |
Class | : 9 (Madhyamik/WB) |
Publisher | : Prof. Nabanita Chatterjee |
Chapter Name | : Theorems On Concurrence (17th Chapter) |
Let us do Yourself – 17.1
1. I draw an acute angled triangle PQR and let us prove that the perpendicular bisectors PQ, QR and RP are concurrent. Hence let us write where the circumcentre lies (inside/ out-side / on the side) of the acute angled triangle.
Solution :
Given:
Let, D, E, F are the mid-points of side PQ, QR and PR of a triangle PQR respectively. The two perpendiculars on the side PQ and QR respectively at the points D and E meet at the point O.(\because P Q and Q R are not parallel) Join O, F
R.T.P: The three perpendicular drawn on \mathrm{PQ}, \mathrm{QR} \text{ and } \mathrm{PR} at the piont D and F are concurrencies. Hence. it will be sufficient to prove that If OF perpendicular on PR. Then it will be proved that the three perpendicular bisectors are concurrent.
Construction : Join \mathrm{O}, \mathrm{P} ; \mathrm{O}, \mathrm{Q} ; \mathrm{O}, \mathrm{R}
Proof: In \mathrm{\triangle P O D \text{ and } \triangle Q O D}
\mathrm{PD}=\mathrm{QB} \quad[\because \mathrm{D} \text{ is mid-point of } PQ]
\angle \mathrm{PDO}=\angle \mathrm{QDO}=90^{\circ} \quad[\because \mathrm{OD} \perp \mathrm{PQ}]
OD is common side.
\because \triangle \mathrm{POD} \cong \triangle \mathrm{QOD} [\text{Congruent} \ \mathrm{S}-\mathrm{A}-\mathrm{S} \ \text{hypothesis}]
\therefore \mathrm{OP = OQ} [Corresponding sides of congreuent triangle]…….(i)
Similarly congruent S-A-S hypothesis, \triangle Q O E \cong \triangle R O E.
\therefore OQ = OR ………. (ii)
\therefore (i) and (ii) we get OP = OR ……….. (iii)
Again, in \triangle \mathrm{PFO} \text{ and } \triangle \mathrm{RFO}
\mathrm{OP}=\mathrm{OR} \\
\mathrm{PF}=\mathrm{RF}[\because F \text { is mid-point of } P R]
OF is common side.
\therefore \triangle \mathrm{QFO} \cong \triangle \mathrm{RFO} [ Corresponding angle of congruent triangle.]
If OF stands on line segment PR, the produced adjusted angles are equal.
OF, is perpendicular on PR.
So that three perpendicular bisectors on sides of \triangle \mathrm{PQR} concurrent.
Hence, the circumcentre lies inside the triangle.
2. I draw an obtuse triangle and let us prove that the perpendicular bisectors of sides are concurrent. Let us write where the circumcentre lies (Inside/outside/on side of the triangular region.
Solution: Follow the same process in question (1). The position of the circumcentre outside of the triangular region.
3. Rita draws a right-angled triangle. Let us prove logically that the perpendicular bisectors of sides are concurrent and where the position of the circumcenter (inside/outside/on the side) is.
Solution: Follow the same process in question (1). The position of the circumcentre onside of the triangular region.
Let us do Yourself – 17.2
1. Let us write what is the length of circum radius of : triangle lengths of sides of which are 6 cm, 8 cm and 10 cm
Solution:
The triangle containing the sides 6 cm, 8 cm and 8 cm is a right angled triangle.
As. 6^2+8^2=10^2
\therefore The circum-centre of this triangle lies on the mid-point of hypotenuse,
So, the length of Circum-radius =\frac{10}{2} cm . =5 cm. (Ans.)
2. If the length of circum-radius of a right-angled triangle is 10 cm, then let us write how much length of hypotenuse of triangle is.
Solution : In right angled triangle, the circum-centre lies on the mid-point of hypotenuse,
So, length of hypotenuse of triangle is = 2 × 10 cm
= 20 cm (Ans.)
Let us do Yourself – 17.3
1. I draw a triangle PQR and let us prove logically that the medians of \triangle \mathrm{PQR} are concurrent:
Solution :
Given: Let \triangle P Q R is triangle, two medians of which QE and RF intersect at G. Join P, G and produced AG meets QR at D.
R.T.P.: Medians of triangle are concurrent. Hence, the medians of a triangle will be concurrent if it is shown that the point of side QR.
Construction: PD is produced to H in such a way that \mathrm{PG}=\mathrm{GH}. \mathrm{B}, \mathrm{H} \text{ and } \mathrm{C}, \mathrm{H} are joined
Proof: In \triangle \mathrm{PQH}, \mathrm{F} \text { is the mid-point of } \mathrm{PQ} [Hypotenuse]
G is the mid-point of PH [Construction]
\therefore \mathrm{FG} \| \mathrm{QH} \quad[\because line joining two mid-points of any two sides of a triangle is parallel to third sides of a triangle]
Again, similarly, in \triangle PRH, E is the mid-point of PR [Hypotenuse] and G is the mid-point of PH [by construction]
\therefore \mathrm{GE} \| \mathrm{HR}
\therefore We get in quadrilateral GR \| \mathrm{QH} \text{ and } \mathrm{QG} \| \mathrm{HR}.
\therefore \mathrm{QGRH} is a parallelogram, diagonals of which are QR and GH.
\therefore \quad D is the mid-point of QR [\therefore diagonal of parallelogram bisect each other]
\therefore The three medians of a triangle are concurrent.
2. I draw acute angle-triangle, right angled triangle and obtuse angled triangle seperately and let us find what is the position of centroid of triangles.
Solution :
Acute angle-triangle
Position of centroid inside the triangle
Right angle-triangle
Position of centroid inside the triangle.
Obtuse angle-triangle
Position of centroid inside the triangle.
Let us do yourself – 17
1. The bisector of <B and <C of \triangle A B C intersect at the point I. Let us prove that <B I C=90^{\circ}+ <BAC
Solution :
Given:
Let ABC be a triangle, and the bisectors of <B and <C intersect at the point I.
R.T.P: <\mathrm{BIC}=90^{\circ}+\frac{<\mathrm{BAC}}{2}
Proof: \because <B is the bisector of ABC.
\therefore<\mathrm{IBC}= <\mathrm{ABI} \text{ and } \therefore < \mathrm{ABC}=2<\mathrm{IBC} \text{ and } < \mathrm{C} \text{ is the bisector of } < A B C
\therefore<\mathrm{ICB}=<\mathrm{ACl} \text { and } \therefore<\mathrm{ACB}=2<\mathrm{ICB} \\
\therefore<\mathrm{ABC}+<\mathrm{ACB}=2(<\mathrm{IBC}+<\mathrm{ICB})
We have,
<\mathrm{BAC} =180^{\circ}-(<\mathrm{ABC}+<\mathrm{ACB}) \\
=180^{\circ}-2(<\mathrm{IBC}+<\mathrm{BIC}) \quad[\text { by }(\mathrm{i})] \\
=180^{\circ}-2\left(180^{\circ}-<\mathrm{BIC}\right) \\
=180^{\circ}-360^{\circ}+2<\mathrm{BIC} \\
=2<\mathrm{BIC}-180^{\circ}
or, 2<\mathrm{BIC}=180^{\circ}+<\mathrm{BAC}
\text { or, } <\mathrm{BIC}=\frac{180^{\circ}+ <\mathrm{BAC}}{2} \\
\therefore <\mathrm{BIC}=90^{\circ}+\frac{180^{\circ} + <\mathrm{BAC}}{2} (Proved)
2. If the length of two medians of a triangle are equal, Let us prove that the triangle is an issoceles triangle.
Solution :
Given:
Let, the medians BE and CF of the triangle ABC are equal.
R.T.P : The triangle ABC is an Isosceles triangle.
Proof: Let the point of intersection of the medians BE and CF be G. Hence, G is the centroid of the triangle ABC (because the third median of the triangle ABC must pass through G).
Again, the centroid of triangle divide each median internally in the ratio 2 : 1.
\therefore \mathrm{GE}=\frac{1}{3} \mathrm{BE} \text { and } \mathrm{GF}=\frac{1}{3} \mathrm{CF}
But it is given that, \mathrm{BE}=\mathrm{CF}
\therefore \frac{1}{3} \mathrm{BE}=\frac{1}{3} \mathrm{CF} \therefore \mathrm{BE}=\mathrm{CF}
Also, \mathrm{BG}=\mathrm{BE}-\mathrm{GE}=\mathrm{BE}-\frac{1}{3} \mathrm{BE}=\frac{2}{3} \mathrm{BE}
and \mathrm{CG}=\mathrm{CF}-\mathrm{GF}=\mathrm{CF}-\frac{1}{3} \mathrm{CF}=2 \mathrm{CF}
Since, \mathrm{BE}=\mathrm{CF} \therefore \mathrm{BG}=\mathrm{CG}.
Now, in the triangles GEC and GFB
\mathrm{GE}=\mathrm{GF}, \mathrm{CG}=\mathrm{BG}
and included <\mathrm{CGE}= \text { included } <\mathrm{BGF} (vertically opposite angles)
\therefore \triangle \mathrm{GEC} \cong \triangle \mathrm{GFB} (by side – angle – side congruency)
\therefore \quad \mathrm{BF}=\mathrm{CE}
or, \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{AC}
or, \mathrm{AB}=\mathrm{BC}
Hence, \triangle A B C is an isosceles triangle. (Proved)
3. Let us prove that in an equilateral triangle, circumcentre, incentre, centriod, ortho-centre will coincide.
Solution :
Given:
Let, ABC be an equilateral triangle
R.T.P: In the equilateral triangle ABC, circumcentre, incentre, centroid and orthocentre are the same point.
Construction: AD is drawn perpendicular from A on BC, BE is drawn perpendicualar from B on CA and CF is drawn perpendicular from AB. Let, the point of intersection of the three perpendiculars be O.
Proof: According to the construction, O is the ortho-centre of the \triangle A B C
Now, in the \triangle A B D and the \triangle A C D
(Since each of them is a right angle)
\therefore \triangle A B D \cong \triangle A C D \\
\therefore \quad < B A D = < C A D
\therefore \quad AD is the bisector of <BAC
Similarly, BE and CF are respectively the bisector of <ABC and <ACB
\therefore O is incentre of the triangle.
\therefore \triangle A B D \cong \triangle A C D \\
\therefore BD = CD
Therefore, AD is a median of the triangle. Similarly, BE and CF are the other two medians. Therefore O is the centroid of the triangle. Again in \triangle B O D and \triangle COD, BD = DC, OD is the common side and <ODB = <ODC.
\therefore \triangle B O D \cong \triangle C O D \\
\therefore O B=O C \text {. similarly } O C=O A
4. AD, BE and CF are three medians of a triangle ABC. Let us prove that the cetroid of ABC and DEF are the same point.
Solution :
Given:
Let AD, BE and CF are three medians of a triangle ABC. Let G be the centroid of \triangle A B C, BE cuts FD at Q, DE cuts FC at R and FE cuts AD at P respectively.
R.T.P : The Centroid of \triangle \mathrm{ABC} and \triangle D E F are the same point.
Proof: E and F are the mid-points of AC and AB. Then, EF \| BC
\therefore \quad E F=\frac{1}{2} \mathrm{BC}
\therefore \quad \mathrm{EF}=\mathrm{BD}[\because D is mid-point of BC]
\therefore \mathrm{EF}\|\mathrm{BC}\| \mathrm{BD} \text{ and } \mathrm{EF}=\mathrm{BD}.
\therefore \quad BDEF is a parallelogram.
Similarly,
CDFE is a parallelogram and AFDE is a parallelogram.
In parallelogram BDEF, FQ = QD
In Parallelogram CDFE, DR = RE
In parallelogram AFDE, FP = PE
Hence, \quad FQ = QD, Q is mid-point of FD
\therefore \quad \mathrm{QE} is a median of \triangle \mathrm{DEF}
DR = RE, R is mid-point of DE
FR is a median of \triangle D E F
\mathrm{FP}=\mathrm{PE}, \mathrm{P} is mid-point EF.
DP is a median of \triangle D E F
Hence, The three medians QE, FR and DP meets at the point G
\therefore The centroid of \triangle \mathrm{ABC} \triangle \mathrm{DEF} are the same point. (Proved)
5. Let us prove that two medians of triangle are together greater than the third median.
Solution :
Given:
Let, the three medians of the triangle ABC be AD, BE and CF the point of intersection of these three medians is G.
R.T.P: The sum of the any two medians of the triangle ABC is greater than the third median.
Construction : AD is produced upto H in such a way that \mathrm{GD}=\mathrm{DH}. \mathrm{CH} is joined.
Proof: In triangles BGD and DHC
\mathrm{GD}=\mathrm{DH} (By construction)
BD = DC (\because D is the mid-point of BC)
and included <\mathrm{CDH} (Vertically opposite angle)
\therefore \triangle B D G \cong \triangle D H C \\
\therefore \quad BG = CH
Now, in \triangle \mathrm{GHC}, \mathrm{GC}+\mathrm{CH}>\mathrm{GH}
or, \mathrm{GC}+\mathrm{BG}>\mathrm{GH}[\because it has been proved that BG = CH]
or, \mathrm{GC}+\mathrm{BG}>\mathrm{AG}[\because \mathrm{GH}=2 \mathrm{GD}=2 . \frac{1}{2} \mathrm{AG}=\mathrm{AG}]
or, \frac{2}{3} \mathrm{CF}+ \frac{2}{3} \mathrm{BE}>{ } \frac{2}{3} \mathrm{AD}
or, \mathrm{CF}+\mathrm{BE}>\mathrm{AD}
\text { i.e, } \mathrm{BE}+\mathrm{CF}>\mathrm{AD} …………. (i)
\mathrm{BE}+\mathrm{AD}>\mathrm{CF}…………. (ii)
and \mathrm{CF}+\mathrm{AD}>\mathrm{BE}…………. (iii)
From (i), (ii) and (iii) It may be concluded that, the sum of two medians of a triangle is greater thatn the third median. (Proved)
6. AD, BE and CF are three medians of \triangle A B C.
Let us prove that (i) 4(\mathrm{AD}+\mathrm{BE}+\mathrm{CF})>3(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})
(ii) 3(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})>2(\mathrm{AD}+\mathrm{BE}+\mathrm{CF})
Solution :
Proof: Let, the point of intersection of the three medians be G. Then G is the centroid of the triangle ABC.
Now, In \triangle \mathrm{ABG}, \mathrm{AG}+\mathrm{BG}>\mathrm{AB}
In \triangle \mathrm{BCG}, \mathrm{BG}+\mathrm{CG}>\mathrm{BC}
\text { In } \triangle \mathrm{CAG}, \mathrm{CG}+\mathrm{AG}>\mathrm{CA}
Adding
2(\mathrm{AG}+\mathrm{BG}+\mathrm{CG})>\mathrm{AB}+\mathrm{BC}+\mathrm{CA}
Again, Since the median of a triangle is divided at the centroid in the ratio 2 : 1 Therefore,
\mathrm{AG}= \frac{2}{3} \mathrm{AD}, \mathrm{BG}=\frac{2}{3} \mathrm{BE} \text { and } \mathrm{CG}=\frac{2}{3}{\mathrm{CF}}
Hence, \quad 2( \frac{2}{3} \mathrm{AD}+\frac{2}{3} \mathrm{BE}+\frac{2}{3} \mathrm{CF})>\mathrm{AB}+\mathrm{BC}+\mathrm{CA}
\text { or, } \frac{4}{3} (\mathrm{AD}+\mathrm{BE}+\mathrm{CF})>A B+B C+C A \\
\text { or, } 4(\mathrm{AD}+\mathrm{BE}+\mathrm{CF})>3(A B+B C+C A) ………. (i) Proved
Again,
\text { In } \triangle A B D, A B+B D>A D \\
\text { In } \triangle B C D, B C+C E>B E \\
\text { In } \triangle C A F, C A+C E>C F
Adding, \mathrm{AB}+\mathrm{BC}+\mathrm{CA}+\mathrm{BD}+\mathrm{CE}+\mathrm{AF}>\mathrm{AD}+\mathrm{BE}+\mathrm{CF}
or, A B+B C+C A+\frac{B C}{2}+\frac{C A}{2}+\frac{A B}{2}>A D+B E+C F
or, \frac{3}{2} \mathrm{AB}+\frac{3}{2} \mathrm{BC}+\frac{3}{2} \mathrm{CA}>\mathrm{AD}+\mathrm{BE}+\mathrm{CF}
or, \frac{3}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})>\mathrm{AD}+\mathrm{BE}+\mathrm{CF}
or, 3(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})>2(\mathrm{AD}+\mathrm{BE}+\mathrm{CF}) ……… (ii) Proved.
7. Three medians AD, BE and CF of \triangle \mathrm{ABC} intersect each other at the point G. If area of \triangle A B C is 36 sq. cm. Let us calculate (i) Area of \triangle A G B (ii) Area of \triangle C G E (iii) Area of quadrilateral BDGF.
Solution :
Given, Let ABC is a triangle whose medians AD. BE and CF intersect each other at the point G.
\triangle A B C=36 \text { sq. cm}
Prove: \mathrm{AD} \text{ is median of }\triangle \mathrm{ABC}
\therefore \quad \mathrm{GD} \text { is median of } \triangle B G C \text {. }
\therefore \triangle B G D=\triangle C G D
\because \quad A D \text{ is median of } \triangle A B C
\therefore \triangle \mathrm{ABD}=\triangle \mathrm{ACD}
\text { or, } \triangle \mathrm{AGB}+\triangle \mathrm{BGD}= \triangle \mathrm{AGC}+\triangle \mathrm{CGD}
\text { or, } \triangle \mathrm{AGB}+\triangle \mathrm{CGD}=\triangle \mathrm{AGC}+\triangle \mathrm{CGD} [\because \triangle \mathrm{BGD}=\triangle \mathrm{CGD}]
\therefore \triangle A G B=\triangle A G C ……….. (i)
\triangle A F G+\triangle A G C=\triangle B F G+\triangle B G C
\because \quad \mathrm{CF} is median of \triangle \mathrm{ABC}
\therefore \triangle \mathrm{ACF}=\triangle \mathrm{BCF} ……….. (i)
or, \triangle \mathrm{BGF}+\triangle \mathrm{AGC}=\triangle \mathrm{BFG}+\triangle \mathrm{BGC}
\therefore \triangle \mathrm{AGC}=\triangle \mathrm{BGC}
[\because \triangle A F G=\triangle B F G]
By (i) and (ii) we get,
\triangle \mathrm{AGB}=\triangle \mathrm{AGC}=\triangle \mathrm{BGC} \\
\text { But, } \triangle \mathrm{AGB}+\triangle \mathrm{AGC}+\triangle \mathrm{BGC}=\triangle \mathrm{ABC} \\
\therefore \triangle \mathrm{AGR}=-\mathrm{AGC}=\triangle \mathrm{BGC}=\frac{1}{3} \triangle \mathrm{ABC} \\
=\frac{1}{3} \times 36 \text { sq. cm }=12 \text { Sq.cm }
\therefore \text{ (i) } \triangle \mathrm{AGB}=12 \mathrm{sq . cm.} (Ans)
(ii) GE is median of \triangle A G C.
\therefore \quad \triangle \mathrm{CGE} =\frac{1}{2} \triangle \mathrm{AGC} \\
=\frac{1}{2} \times 12 \mathrm{sq} . cm . \\
=6 \mathrm{sq.} cm . \quad \text { (Ans.) }
(iii) \text { Quadrilateral BDGF } =\triangle B F G+\triangle B G D \\
=\frac{1}{2} \triangle A G B+\frac{1}{2} \triangle B G C \\
= (\frac{1}{2} \times 12+\frac{1}{2} \times 12) \text { Sq.cm. } \\
=(6+6)=12 \text { sq. cm. Ans. }
8. AD, BE and CF are the medians of \triangle A B C.
If 2AD = BC let us prove that the angle between two medians is 90^{\circ}.
Solution :
Given: AD, BE and CF are the Medians of \triangle A B C and \frac{2}{3} \mathrm{AD}=\mathrm{BC}
R.T.P : <CGB = 90^{\circ}.
Proof: BC = \frac{2}{3}AD
\text { Also, } A G=\frac{2}{3} A D \ G D=\frac{1}{3} A D \\
\therefore B C=A G, G D=\frac{1}{3} \times \frac{3}{2} B C=\frac{1}{2} B C \\
\therefore B D=C D=\frac{1}{2} B C \\
\therefore B D=G D \text { and } G D=C D
Hence, \triangle B G D \text{ and } \triangle C G D \text{ are isosceles triangles. }
We take, <\mathrm{GBD}=< \mathrm{BGD}= x \text { and } <\mathrm{GCD}=<\mathrm{CGD}=\mathrm{y}
\therefore \mathrm{BDG} =180^{\circ}-(<\mathrm{GBD}+\angle \mathrm{BGD}) \\
=180^{\circ}-(\mathrm{x}+\mathrm{x}) \\
=180^{\circ}-(2 \mathrm{x}) \\
\text { and } < \mathrm{CDG} =180^{\circ}-(<\mathrm{CGD}+\angle \mathrm{GCD}) \\
=180^{\circ}-(\mathrm{y}+\mathrm{y}) \\
=180^{\circ}-(2 \mathrm{y})
\because \quad BC is line segment.
\therefore 180^{\circ}-2 x+180^{\circ}-2 y=180^{\circ}
or, x+y=90^{\circ}.
\therefore \quad < \mathrm{BGD}+< \mathrm{CGB}=90^{\circ}
or, < \mathrm{CGD}=90^{\circ}.
Hence,
The angle between two medians is 90^{\circ} (Proved)
9. P and Q are the mid-points of sides BC and CD of a parallelogram ABCD respectively; the A P and A Q cuts diagonal BD at the points K and L. Let us prove that, BK = KL = LD
Solution:
Given:
ABCD is a parallelogram in which P and Q are the mid-points of Sides BC and CD.
The line AP and AQ cuts diagonals BD at the points K and L
R.T.P : BK = KL = LD.
Construction : We draw KC \| L \mathrm{LQ} \text{ and } CL\|PK
Proof: \triangle \mathrm{In} \mathrm{LBC}, \mathrm{CL} \| \mathrm{PK} \text{ and } \mathrm{P} is mid point of BC
\therefore K is mid point of BL.
\therefore \quad BK = KL ……….. (i)
In \triangle K C D, K C \| L Q \text{ and } Q is mid point of CD.
\therefore L is mid point of DK.
\therefore KL = LD ………… (ii)
From (i) and (ii),
\mathrm{BK}=\mathrm{KL}=\mathrm{LD} \quad \text { (Proved) }
10. (M.C.Q)
(i) O is the circumcentre of ABC; if < BOC = 80^{\circ} the <BAC is
(a) 40^{\circ}
(b) 160^{\circ}
(c) 130^{\circ}
(d) 110^{\circ}
Solution :
We have,
<BOC = 80^{\circ}
<\mathrm{BAC} =\frac{1}{2}<\mathrm{BOC} \\
=\frac{1}{2} 80^{\circ}=40^{\circ}
\therefore \quad (a) is correct option
(ii) O is the Ortho centre of ABC; If <BAC = 40^{\circ} the <BOC is
(a) 80^{\circ}
(b) 140^{\circ}
(c) 110^{\circ}
(d) 40^{\circ}
Solution :
In quadrilateral AFOE,
< \mathrm{BOC}=< \mathrm{FOE}=360^{\circ}-(90^{\circ}+90^{\circ}+40^{\circ}) \\
=360^{\circ}-220^{\circ} \\
=140^{\circ} \\
\therefore (b) is correct option
(iii) O is incentre of ABC; if < \mathrm{BAC}=40^{\circ} \text { then } < \mathrm{BOC} = 4T.
(a) 80^{\circ}
(b) 110^{\circ}
(c) 140^{\circ}
(d) 40^{\circ}
Solution:
We have,
< B O C =90+\frac{1}{2}<\mathrm{BAC} \\
=90+\frac{1}{2} \times 40^{\circ} \\
=90^{\circ}+20^{\circ}=110^{\circ}
\therefore (b) is correct option
(iv) G is the Centroid of triangle ABC; if area of GBC 12 sq.cm., then the area of ABC is
(a) 24 sq.cm.
(b) 6 sq.cm.
(c) 36 sq.cm.
(d) none of them
Solution :
\quad \because \text{ Area of } \triangle \mathrm{ABC}
= 3 × area of \triangle GCB
= 3 × 12 sq.cm.
= 36 sq. cm.
\therefore(c) is correct option
(v) If the length of circumcentre of a right-angled triangle is 5cm.then the length of hypotenuse is
(a) 2.5cm
(b) 10cm
(c) 5cm
(d) none of these
Solution :
\because \text { Length } \\
=2 \times 5 \mathrm{~cm} . \\
=10 \mathrm{~cm} .
\because \text { Length of hypotenuse }
\therefore (\mathrm{b}) is correct option
12. Short answer type.
(i) If the length of sides of triangle are 6 cm, 8 cm, then let us write where the circumcentre of this triangle lies.
Solution :
We have,
=(6)^2+(8)^2 \\
= 36 + 64
= 100
=(10)^2
\therefore The length of sides of triangle are 6cm, 8cm and 10cm.
So, it is right angled triangle.
The circumcentre lies at mid-point of length of side 10cm.
(ii) AD is the median and G is the centriod of an equilateral triangle. If the length of side 3 \sqrt{3 \mathrm{~cm}}, then let us write the length of AG.
Solution :
We have,
\mathrm{AB}=3 \sqrt{3} \mathrm{~cm} \\
\mathrm{AD}=\frac{\sqrt{3}}{2} \times 3 \sqrt{3}
=\frac{3 \times 3}{2} cm=\frac{9}{2} cm \\
\mathrm{AG} =\frac{2}{3} \mathrm{AD} \\
=\frac{3}{2} \times \frac{9}{2} cm \\
=3 cm \text { (Ans.) }
(iii) Let us write how many points are equidistant from sides of a triangle.
Solution : Only one point.
(iv) DEF is a pedal triangle of an equilateral triangle ABC. Let us write the measure of <FDA.
Solution :
\because DEF is a pedal triangle
\therefore \triangle \mathrm{ABC}=4 \times \triangle \mathrm{DEF} \\
\therefore \quad < \mathrm{FDE}=60^{\circ}
and AD is bisector
\therefore < \mathrm{FDA}=\frac{60^{\circ}}{2}=30^{\circ} (Ans.)
(v) ABC is an isosceles triangle in which < \mathrm{ABC}=< \mathrm{ACB} and Median AD = 1 / 2 BC. IF AB \sqrt{2} cm, let us write the length of circumradius of this triangle.
Solution:
\because \mathrm{AB}=\mathrm{AC}=\sqrt{2} cm
A D =\frac{1}{2} B C \\
\therefore \quad A D =B D=C D
\therefore \triangle A B D \text{ and } \triangle A C D are two isosceles triangle.
\therefore \quad < \mathrm{ABC}=< \mathrm{BAD} \text { and } < \mathrm{DAC}=< \mathrm{ACB} \\
\therefore \quad < \mathrm{BAD}+< \mathrm{DAC}=< \mathrm{ABC}+< \mathrm{ACB} \\
\text { or, }<\mathrm{BAC}=180^{\circ}-\angle \mathrm{BAC}
or, 2 < \mathrm{BAC}=180^{\circ}
or, < \mathrm{BAC}=90^{\circ}
Hence, \triangle A B C is a right angled triangle.
\therefore \quad BC is a hypotenuse.
\therefore \mathrm{B C =\sqrt{A B^2+A C^2}} \\
=\sqrt{(\sqrt{2})^2+(\sqrt{2})^2} \\
=\sqrt{2+2} \\
=\sqrt{4}=2 cm .
\therefore \text{ Mid of hypotenuse of a right angled triangle = Circum radius of the triangle } =\frac{2}{2}=1 cm. (Ans.)