Flash Education

Chapter – 15 : Area And Perimeter Of Triangle and Quadrilateral | Chapter Solution Class 9

Area And Perimeter Of Triangle and Quadrilateral
WhatsApp
Book Name: Ganit Prakash
Subject: Mathematics (Maths)
Class: 9 (Madhyamik/WB)
Publisher: Prof. Nabanita Chatterjee
Chapter Name: Area And Perimeter Of Triangle and Quadrilateral (15th Chapter)

Let us Do – 15.1

I see the following figure and find out the perimeter.

I see the following figure and find out the perimeter

Perimeter = 12 cm +13cm + 14.8cm + 16.2cm + 10cm = 66cm (Ans.)

I see the following figure and find out the perimeter

Perimeter = 7cm+19.4cm+21cm+ 10cm = 57.4 cm (Ans.)

I see the following figure and find out the perimeter (2)

Perimeter = 3cm+5.6cm+19cm+ 12cm = 39.6 cm (Ans.)

I see the following figure and find out the perimeter (3)

Perimeter = 8cm+19cm+6cm+15cm +9cm+6cm = 63cm (Ans.)

I see the following figure and find out the perimeter (4)

Perimeter = 9cm+16cm+26cm+ 12cm= 63cm (Ans.)


Let us Do – 15.2

Question 1

If in a square land the length of diagonal is 20√2 meter, let us write by calculating that how much length in meter is required for fencing a wall surrounding of it.

Solution

Let a be the side of the square.

Therefore, the diagonal = a√2

But, a√2 = 20√2

So, a = 20

Therefore, the length for fencing the wall surrounding the square

= 4 × side

= 4 × 20 m = 80 m

Question 2

The rectangular land of Pritma has a 5-meter wide path all around it on the outside. The length and width of the rectangular land are 2.5 decameters (Dm) and 1.7 decameters (Dm), respectively. Let us calculate how much cost will be required for fencing around the outer side of the path at the rate of ₹18 per meter.

Solution

The length of the rectangular land = 2.5 Dm = 25 meters

The width of the rectangular land = 1.7 Dm = 17 meters

Length of the outer rectangle (including path)

= 25 + 2 × 5 = 35 meters

Width of the outer rectangle (including path)

= 17 + 2 × 5 = 27 meters

Perimeter (fencing length) of the outer rectangle

= 2 × (Length + Width)

= 2 × (35 + 27)

= 2 × 62 = 124 meters

Cost of fencing = ₹18 × 124 = ₹2232

Question 3

Let us see the card below, find perimeter and let us write by calculating what will be the length of one side of equilateral triangle with same perimeter.

  1. Let us see the card below, find perimeter and let us write by calculating what will be the length of one side of equilateral triangle with same perimeter
  2. Let us see the card below, find perimeter and let us write by calculating what will be the length of one side of equilateral triangle with same perimeter 1
  3. Let us see the card below, find perimeter and let us write by calculating what will be the length of one side of equilateral triangle with same perimeter 2
  4. Let us see the card below, find perimeter and let us write by calculating what will be the length of one side of equilateral triangle with same perimeter 3
  5. Let us see the card below find perimeter and let us write by calculating what will be the length of one side of equilateral triangle with same perimeter 4
  6. Let us see the card below, find perimeter and let us write by calculating what will be the length of one side of equilateral triangle with same perimeter 5

Solution

(i) Perimeter = 2 × (18 + 12) cm

= 2 × 30 cm

= 60 cm

(ii) Perimeter = 4 × 9 cm

= 36 cm

(iii) Perimeter = 8 cm + 9 cm + 15 cm + 7 cm

= 39 cm

(iv) Perimeter = 12 cm + 12 cm + 21 cm + 21 cm

= 66 cm

(v) Perimeter = 5 cm + 13 cm + 12 cm

= 30 cm

(vi) Perimeter = 14 cm + 14 cm + 17 cm

= 45 cm


Let us Do – 15.3

Question 1

Look at the figures below and let us write by calculation, the area.

(i) Look at the figures below and let us write by calculation, the area

(ii) Look at the figures below and let us write by calculation, the area 1

(iii) Look at the figures below and let us write by calculation, the area 1

(iv) Look at the figures below and let us write by calculation, the area 3

Solution

(i) We have:

AC = 13 cm, BC = 5 cm

In the right-angled triangle ABC, we use the Pythagoras theorem:

AB² = AC² − BC²

= (13)² − (5)²

= 169 − 25

= 144

So, AB = √144 = 12 cm

Therefore, Area of triangle ABC

= ½ × BC × AB

= ½ × 5 × 12 sq. cm

= 30 sq. cm

(ii) Area of triangle ABC = (√3 / 4) × (6)²

= (√3 / 4) × 36

= 9√3 sq. cm

(iii) Area of triangle ABC = 1\over2 × 8 × √[(6)² − (8/2)²]

= 1\over2 × 8 × √(36 − 16)

= 4 × √20

= 4 × √(2 × 2 × 5)

= 4 × 2 × √5

= 8√5 sq. cm

(iv) Let a = 16 cm, b = 14 cm, c = 10 cm

Semi-perimeter (s) = \text{a + b + c} \over 2

= \text{16 + 14 + 10} \over 2

= 40 \over 2 = 20 cm

Area of triangle BCD = √[s(s − a)(s − b)(s − c)]

= √[20 × (20 − 16) × (20 − 14) × (20 − 10)]

= √(20 × 4 × 6 × 10)

= √(10 × 2 × 2 × 2 × 2 × 3 × 10)

= 2 × 2 × 10 × √3

= 40√3 sq. cm

Area of quadrilateral ABCD = 2 × area of triangle BCD

= 2 × 40√3

= 80√3 sq. cm

Question 2

In a lake of Botanical Garden the tip of lotus was seen 2cm. above the surface of water. Being forced by the wind, it gradually advanced and submerged at a distance of 15cm. from the previous position. Let us write by calculating the depth of water

Solution

F561C260 2948 4FCC 8DB9 C55C2CDCC67C

Let the depth of water be x.

Therefore,

AC = x cm, AB = 15 cm

So, BC = (x + 2) cm

We use the Pythagoras theorem:

BC² = AB² + AC²

(x + 2)² = 15² + x²

x² + 4x + 4 = 225 + x²

Now cancel x² from both sides:

4x + 4 = 225

4x = 221

x =221 \over 4

x = 55.25 cm

Question 3

The length of hypotenuse of an isosceles right-angle triangle is 12 \sqrt{2} \mathrm{~cm}, Let us write by calculating what wi be the area of that fied.

Solution

076A9D59 2939 42B6 8174 F763E226394F

Since triangle ABC is an isosceles right-angled triangle,

therefore, AB = BC

Let AB = BC = x

We know that:

AB² + BC² = AC²

x² + x² = (12√2)²

x² + x² = 144 × 2

2x² = 288

x² = 144

x = √144 = 12

So, AB = BC = 12 cm

Now, area of triangle ABC

= 1\over2 × BC × AB

= 1\over2 × 12 × 12 = 72 sq. cm

Question 4

The lengths of three sides of our trianglular park are 65m, 70m and 75m. Let us write by calculating the length of perpendicular drawn from opposite vertex on the long side.

Solution

733D086B AEC4 44A3 972C 1AA9420A7E6C

Let a = 65 m, b = 70 m, c = 75 m

Step 1: Calculate semi-perimeter (s)

s = (a + b + c) / 2

= (65 + 70 + 75) / 2

= 210 / 2 = 105 m

Step 2: Use Heron’s formula to find the area of triangle ABC

Area of triangle ABC = √[s(s − a)(s − b)(s − c)]

= √[105 × (105 − 65) × (105 − 70) × (105 − 75)]

= √[105 × 40 × 35 × 30]

= √[35 × 3 × 10 × 2 × 2 × 35 × 3 × 10]

= 35 × 3 × 2 × 10 = 2100 sq. m

Step 3: Use area formula to find the length of perpendicular (CD)

We know:

Area = (1/2) × base × height

2100 = (1/2) × 75 × CD

75 × CD = 4200

CD = 4200 / 75

CD = 56 m

Question 5

The ratio of height of the two triangles which are drawn by Suja and I is 3 : 4 and the ratio of their area is 4 : 3. Let us write by calculating what will be the ratio of two bases.

Solution

We have.

Ratio of the two triangles = 3 : 4

Ratio of area of the two triangles = 4 : 3

\therefore \frac{\text { Area of } 1 \text { st. triangle }}{\text { Area of } 2 \text { nd. triangle }}=\frac{4}{3}

or, \frac{\text { Base of } 1 \text { st. triangle }}{\text { Base of } 2 \text { nd. triangle }} \times \frac{\text { Height } 1 \text { st triangle }}{\text { Height } 2 \text { nd triangle }}=\frac{4}{3}

or, \frac{\text { Base of } 1 \text { st. triangle }}{\text { Base of } 2 \text { nd. triangle }} \times \frac{3}{4}=\frac{4}{3}

\therefore \quad \frac{\text { Base of } 1 \text { st. triangle }}{\text { Base of } 2 \text { nd triangle }} \times \frac{16}{9}

\therefore Ratio of two bases = 16 : 9


Let us work out – 15.1

Question 1

I see the house of Kamal and let us find the answers.

(i) Let us write by calculating the area of Kamal’s garden.

(ii) Let us write by calculating how much cost is required to repair the floor of Kamal’s verandah at the rate of Rs. 30/m.

(iii) Kamal wants to cover the floor of his reading room with tiles. Let us write by calculating how many tiles will be required to cover the floor of the reading room with the size of tiles 25cm. × 25cm.

Solution

(i) Area of Kamal’s garden = 20 m × 20 m

= 400 sq. m

(ii) Area of Kamal’s verandah = 10 m × 5 m

= 50 sq. m

Therefore, cost of repairing the floor of Kamal’s verandah

= ₹30 × 50

= ₹1500

(iii) Length of the reading room = 6 m = 600 cm

Breadth of the reading room = 5 m = 500 cm

Size of one tile = 25 cm × 25 cm

No. of tiles =\frac{600 \times 500}{25 \times 25} = 480

Question 2

Let us see the following pictures and calculate the area of its coloured part.

(i) 2E7DDD6C C6B8 4AAD 9F52 9B989DC8C8C3

(ii) 6D4BD9B8 2722 40AE 9C1E 3DCE548CFC73

(iii) D2C79C6E E03D 45CB 812C 5E7949F0813B

(iv) 46766ED3 C6E6 4852 A0D7 E4890DCFC984

(v) 3A4353DD B277 4B1C 9BF6 9EB2E6D21084

Solution

(i) IMG 3293

Area of rectangle ABCD = AB × AD

= 12 m × 8 m

= 96 sq. m

Now,

AE = 12 m − 3 m = 9 m

AG = 8 m − 3 m = 5 m

Area of rectangle AEFG = AE × AG

= 9 m × 5 m = 45 sq. m

Area of the coloured part = 96 − 45 = 51 sq. m

(ii) IMG 3294

AB = 14 m, BC = 26 m

Area of rectangle ABCD = AB × BC

= 14 m × 26 m

= 364 sq. m

DE = (26 − 3) / 2 = 23 / 2 = 11.5 m

DG = (14 − 3) / 2 = 11 / 2 = 5.5 m

Area of one small square (DEFG) = DE × DG

= (23 / 2) × (11 / 2)

= 253 / 4 = 63.25 sq. m

Area of 4 small squares = 4 × 63.25 = 253 sq. m

Area of the coloured part = 364 − 253 = 111 sq. m

(iii) IMG 3295

AB = 16 m, AD = 9 m

EF = 16 m + 2 × 4 m = 16 m + 8 m = 24 m

HE = 9 m + 2 × 4 m = 9 m + 8 m = 17 m

Area of rectangle ABCD = AB × AD

= 16 m × 9 m

= 144 sq. m

Area of rectangle EFGH = EF × HE

= 24 m × 17 m

= 408 sq. m

Area of coloured part = 408 − 144 = 264 sq. m

(iv) IMG 3296

AB = 28 m, BC = 20 m

EF = 28 − 2 × 3 = 28 − 6 = 22 m

FG = 20 − 2 × 3 = 20 − 6 = 14 m

Area of rectangle ABCD = AB × BC

= 28 m × 20 m

= 560 sq. m

Area of rectangle EFGH = EF × FG

= 22 m × 14 m

= 308 sq. m

Area of the coloured part = 560 − 308

= 252 sq. m

(v) IMG 3297

Because BC = 120 cm, CD = 90 cm

Area of rectangle ABCD = BC × CD

= 120 cm × 90 cm

= 10,800 sq. cm

II = BC = 120 cm, IJ = 3 cm

Area of rectangle IJKL = BC × IJ

= 120 cm × 3 cm

= 360 sq. cm

EH = 3 cm,

FE = BJ = (90 − 3) / 2 = 87 / 2 cm

IL = BC = 120 cm, IJ = 3 cm

EH = 3 cm,

FE = BJ = 87 / 2 cm

Area of rectangle EFGH = EH × FE

= 3 cm × (87 / 2) cm = 261 / 2 sq. cm

Area of 4 small rectangles = 4 × (261 / 2)

= 522 sq. cm

Area of coloured part = 360 + 522

= 882 sq. cm

Question 3

The length and breadth of rectangular field of Birati Mahajati Sangha are in the ratio 4 : 3. The path of 336 meter is covered by walking once round the field. Let us write by calculating the area of the field.

Solution

IMG 3273

Let length = 4x

Let breadth = 3x, where x is the common ratio.

Therefore, Perimeter = 2(4x + 3x)

= 2 × 7x

= 14x

According to the problem,

14x = 336

x = 336 ÷ 14 = 24

Length = 4 × 24 = 96 m

Breadth = 3 × 24 = 72 m

Therefore, Area of the rectangular field = Length × Breadth

= 96 m × 72 m

= 6912 sq. m

Question 4

The cost of farming a square land of Samar at the rate of Rs.3.50 per sq. meter is Rs.1400. Let us calculate how much cost will be for fencing around its four sides with same height of Samar’s land at the rate of Rs. 8.5 per meter.

Solution

The cost of farming a square land of Samar at the rate of ₹3.50 per square meter is ₹1400.

Therefore, area of the square land = 1400 ÷ 3.50

= 400 sq. meters

Length of side of the square land = √Area

= √400

= 20 meters

Length of fencing around its four sides = 4 × side

= 4 × 20

= 80 meters

∴ Total cost of fencing = ₹8.50 × 80

= (850 ÷ 100) × 80

= ₹680

Question 5

The area of rectangular land of Suhas’s is 500sq. meters. If length of land is decreased by 3 meter and breadth is increased by 2 meter, then the land formed a square. Let us write by calculating the length and breadth of land of Suhas’s.

Solution

Let the length of the rectangular land be x

and the breadth be y

Area of the rectangular land = 500 sq. m

So, x × y = 500 ………….. (i)

If the length is decreased by 3 m and the breadth is increased by 2 m, the land becomes a square.

or, x − 3 = y + 2

Solving,

x = y + 2 + 3

x = y + 5 ……………. (ii)

Putting the value of x in equation (i):

(y + 5) × y = 500

or, y² + 5y − 500 = 0

or, y² + 25y − 20y − 500 = 0

or, y(y + 25) − 20(y + 25) = 0

or, (y + 25)(y − 20) = 0

So, either

y + 25 = 0

y = −25

or

y − 20 = 0

y = 20

Since distance cannot be negative,

y = 20

From equation (ii):

x = y + 5 = 20 + 5 = 25

Therefore,

Length of the rectangular field = 25 m

Breadth = 20 m

Question 6

Each side of a square land of our village is 300 meter. We shall fence that square land by 3dcm. wide wall with same height around its four sides. Let us see that how much will it cost for the wall at the rate of Rs. 5,000 per 100 sq.meter.

Solution

Side of a square land = 300m

Area \text{ " " " " " " " " "} =(3.00)^2 \text { Sq.m. } \\

=90000 \text { Sq.m. } \\

\text { Wide of the wall }=3 \mathrm{dcm} . \quad=0.3 \mathrm{~m} \text {. } \\

\text { Length of the square with wide }=(300+2 \times 0.3)^2 \mathrm{~m} \\

=(300+0.6) \mathrm{m} \\

=300.6 \mathrm{~m} \\

=(300.6)^2 \\

=90360.36 \mathrm{Sq} \cdot \mathrm{m} \\

\text { Area of } 4 \text { walls }=(90360.36-90000) \text { Sq.m. } \\

=360.36 \text { Sq.m. } \\

Cost of the wall 100 Sq.m at the rate of Rs. 5,000

\text { " " " } 1 \text { " } 1 \text { " } 360.36 \text { sq.m:" } "

=\frac{5,0\cancel{00}}{1\cancel{00}}=\text { Rs. } 50 \\

\text { " " " "360.36sq.m. " "" " " } =\text { Rs. } 360.36 \times 50 \\

=\text { Rs. } \frac{36036}{100} \times 50 \\

=\text { Rs. } 18018 \text { (Ans.) }

Question 7

The length and breadth of recatangular garden of Rehana are 14 meter and 12 meter. If the cost of constructing an equally wide path inside around the garden is Rs. 1,380 at the rate of Rs. 20 per sq.meter, then let us write by calculating how much wide is the path.

Solution

IMG 3284

Length of rectangular garden = 14m

Breadth ” ” ” ” ” ” ” = 12m

Let the width of the park = x

\text { Length of rectangular garden } =14-2 × x \\

= 14 – 2x

Breadth ” ” ” ” ” ” = 12 – 2 × x

= 12 – 2x

Cost of constructing of wide path of 20 sq.m = Rs. 1380

\text{ " " " " " " " " " " " " "} 1 \ sqm. =Rs\frac{1380}{20} \\

=\text { Rs. } 69

According to the condition of the problem

(14-2 x)(12-2 x)=69 \\

\text { or, } 168-28 x-24 x+4 x^2=69 \\

\text { or, } 4 x^2-52 x+168-69=0 \\

\text { or, } 4 x^2-52 x+69=0 \\

\text { or, } 4 x^2-46 x-6 x+69=0 \\

\text { or, } 2 x(2 x-23)-3(2 x-23)=0 \\

\text { or, }(2 x-23)(2 x-3)=0

either,

2 x-23=0 \quad \text { or, } \quad 2 x-3=0

or, 2 x=23 \quad \text { or, } 2 x=3

\therefore x=\frac{23}{2}=11.5 \quad \therefore x=\frac{3}{2}=1.5

\therefore \quad x = 11.5 is not possible because wide can not be greater or equal or nearest to recatangular length

\therefore x = 1.5

\therefore \quad Wide of the path = 1.5m (Ans.)

Question 8

If the length of recatangular garden with area 1200 sq.cm. is 40cm. then let us write by calculating the area square field which is drawn on its diagonal.

Solution

Length of rectangular garden = 40cm.

Area \text{ " " " " " " " " " " " " "} = 1200 Sq.cm.

Breadth \text{ " " " " " " " " " " " " "} = \frac{\cancel{1200}}{\cancel{40}} cm

= 30cm.

\therefore \text { Lenth of diagonal of rectangle } =\text { side of the square. } \\

=\sqrt{(40)^2+(30)^2} \\

=\sqrt{1600+900} \\

=\sqrt{2500} \\

=50 \mathrm{~cm} .

\therefore \text { Area of the square field } =(\text { Side })^2 \\

=(50)^2 \\

=2500 \text { Sq.cm. } \quad \text { (Ans.) }

Question 9

The length, breadth and height of a hall are 4 meter, 6 meter and 4 meter. There are three doors and four windows in the room. The measurement of each door is 1.5 meter × 1 meter and each window is 1.2 meter × 1 meter. How much it will cost for covering four walls by coloured paper at the rate of Rs. 70 per square meter.

Solution

Length = 4m, Breadth = 6cm, height = 4m :

\text { Area of one door } =1.5 \times 1 \mathrm{~m} =1.5 \mathrm{Sq} . \mathrm{m} . \\

\text { Area of three doors } =3 \times 1.5 \mathrm{Sq} . \mathrm{m} =4.5 \mathrm{Sq} . \mathrm{m} . \\

\text { Area of one window } =1.2 \mathrm{~m} \times 1 \mathrm{~m} =1.2 \mathrm{Sq} . \mathrm{m} \\

” ” ” ” \quad 4 \text { Windows } =1.2 \times 4 \mathrm{Sq} . \mathrm{m} . =4.8 \mathrm{Sq} . \mathrm{m} .

Area of the walls with doors and windows

=2 \text { (Length }+ \text { Breadth) } \times \text { height. } \\

=2(4 \mathrm{~m}+6 \mathrm{~m}) \times 4 \mathrm{~m} \\

=2 \times 10 \mathrm{~m} \times 4 \mathrm{~m} . \\

=80 \mathrm{Sq} . \mathrm{m} .

Area of the walls without doors and windows.

=\{80-(4.5+4.8)\} \text { Sq.m. } \\

=(80-9.3) \mathrm{Sq} \cdot \mathrm{m} \\

=70.7 \mathrm{Sq} \cdot \mathrm{m} .

\text { Cost of colouring } =\text { Rs. } 70 \times 70.7 \\

=\text { Rs. } 4949 \quad \text { (Ans.) }

Question 10

The area of four walls of a room is 42sq. meter and area of floor is 12 sq.meter. Let us write by calculating the height of room if the Iength of room is 4 meter.

Solution

Length of room = 4m

Area of the floor = 12 \mathrm{Sq} \cdot \mathrm{m}

or, Length × Breadth = 12

\text { or, Breadth }=\frac{12}{\text { Length }} \\

=\frac{12}{4}=3 \mathrm{~m} \text {. } \\

\therefore Area of four walls of a room = 42 sq.cm

or, 2 (Length + Breadth) \times height =42

or, 2(4+3) \times height =42

or, 2 \times 7 \times height =42

or, 14 \times height =42

or, height =\frac{\cancel{42}}{\cancel{14}}

\therefore height =3 \mathrm{~m}.

\therefore Height of room =3 \mathrm{~m} (Ans)

Question 11

Sujata will draw a rectangular picture un a paper with area 84sq. cm The difference of length and breadth of paper is 5cm. Let us calculate the perimeter of paper of Sujata.

Solution

Let the length of the rectangular picture be x

and ” breadth” \text{ " " " " " " " " " " " " "} y

\therefore \quad Area = 84 Sq.cm.

or, x \times y=84

or, xy = 84…………… (i)

According to the condition of the problem,

x – y = 5

\text { or, } \quad x=5+y………. (ii)

Putting the value of x in equation ……………… (i)

(5 + y) y = 84

\text { or, } 5 y+y^2=84 \\

\text { or, } y^2+5 y-84=0 \\

\text { or, } y^2+12 y-7 y-84=0 \\

\text { or, } y(y+12)-7(y+12)=0 \\

\text { or, }(y+12)(y-7)=0

Either,

y + 12 = 0

or, y = -12

or, y – 7 = 0

\therefore \quad y = 7

\because Length can’t be negative

\therefore y=7

From (ii),

x =5 + y

= 5 + 7 = 12

\therefore Length of the rectangular picture = 12m.

\text { Breadth " " " " " } = 7m.

\therefore Perimeter ” ” ” ” = 2(12+7)m

=2 \times 19 \mathrm{~m}

=38 \mathrm{~m} \text {. (Ans.) }

Question 12

There is a 2.5 meter wide path around the square garden of Shiraj’s. The area of path is 165 Sq.meter. Let us calculate the area of garden and the length of diagonal.

Solution

Let the side of the square garden be x There is a 2.5m wide path around the square.

Side of square garden with path

=(x+2 \times 25) \quad =(x+5)

Accodring to the condition of the problem,

(x+5)^2-(x)^2=165

or, (x)^2+2 \cdot x .5+(5)^2-x^2=165

or, \cancel{x^2}+10 x+25- \cancel{x^2}=165

or, 10 \mathrm{x}=165-25

or, 10 \mathrm{x}=140

\therefore \quad \mathrm{x}=14

\therefore Side of the square garden

\text { Side of the square garden } =14 \mathrm{~m} \\

\text { Area" } =(\text { side })^2 \\

=(14)^2 \\

=196 \text { Sq.m. }

\text { Length of diagonal } =\text { side } \sqrt{2} \mathrm{~m} \\

=14 \sqrt{2} \mathrm{~m} (Ans.)

Question 13

Let us write by calculating that how much length of wall in meter is required for walling outside round the square field, whereas the length of diagonal of the square land is 20 \sqrt{2} meter. Let us write by calculating how much cost will be for planting grass at the rate of Rs. 20 per sq. meter.

Solution

Length of the diagonal of the square land = 20 \sqrt{2} \mathrm{~m}

\therefore \quadSide of the square land = 20m

Length of wall for walling outside round the square field = perimeter of the square.

= 4 × side

= 4 × 20m = 80m

\therefore \quad Area of the square land = (\text { side })^2

=(20)^2 \\

=400 \text { Sq. } \cdot \mathrm{m}

\therefore Cost for planting grass at the rate of Rs. 20 per Sq.m

=\text { Rs. } 20 \times 400 \\

=\text { Rs. } 8000 \quad \text { (Ans.) }

Question 14

We shall fence our rectangular garden diagonally. The length and breadth of rectangular garden are 12 meter and 7 meter. Let us calculate the length of fence. Also find the perimeter of the two triangles formed by this fence.

Solution

Length of the rectangular garden = 12m.

\text { Breadth" " " " " " " " " " " " } = 7m

\text { Length of diagonal } =\sqrt{(\text { Length })^2+(\text { breadth })^2} \\

=\sqrt{(12)^2+(7)^2}

=\sqrt{193 \mathrm{~m}} \\

\text { Perimeter of the triangle } =12 \mathrm{~m}+7 \mathrm{~m}+\sqrt{193 \mathrm{~m}} \\

= (19+\sqrt{193}) \mathrm{m} \text { (Ans.) }

Question 15

A big hall of house of Mousumi is in the form of rectangle, of which length and breadth are in the ratio 9:5 an, perimeter is 140 meter. Mousumi wants to cover the floor of her hall with rectangular tiles of dimensions 25cm, 20cm. The rate of each 100 tiles is Rs.500. Let us calculate the cost for covering the floor with tiles.

Solution

Let length of rectangle be 9x

\text { Breadth" " " " " " " " " " " " } 5 x

\therefore Perimeter of rectangle = 140m

or, 2 (Length + Breadth )= 140

or, 2(9x + 5x) = 140

or, x =\frac{140}{4 \times \sqrt{4}}

\therefore \quad x = 5

\therefore \quad Length of rectangle = 9 \mathrm{x}=9 \times 5=45 \mathrm{~m}

Breadth of rectangle =5 \mathrm{x}=5 \times 5=25 \mathrm{~m}

Area of rectangle = length \times breadth

=45 \mathrm{~m} \times 25 \mathrm{~m} \\

=1125 \text { Sq.m }

\text { Dimension of one tile } =25 \mathrm{~cm} \times 20 \mathrm{~cm} \\

=\frac{25}{100} \times \frac{20}{100} \text { Sq.m. } \\

=\frac{1}{20}

\text { No. of tiles } =1125 \div \frac{1}{20} \\

=1125 \times 20=22500

Rate of each 100 tiles = Rs. 500

\text { " " " " } 1tile = Rs. \frac{500}{100} \\

\text { " " " } 22500 Rs. \frac{500}{100} \times 22500 \\

=\mathrm{Rs}: 112500 \text { (Ans.) }

Question 16

The cost of carpeting a big hall of length 18 meter is Rs.2160. If the breadth of the floor would be 4 meter less, then the cost would have been Rs.1,620. Let us calculate perimeter and area of the hall.

Solution

Length of Rectangle = 18m

Let breadth of Rectangle be x

Total cost = Rs. 2160

Area of Rectangle = 18 \times x=18 \times Sq.m.

If the breadth of the floor would be 4 meter less.

\therefore Breadth of Rectangle = x – 4

Area of Rectangle =18(x-4) \mathrm{Sq} . \mathrm{m}

Cost of carpeting of 18x Sq. m. = Rs .2160

\text {" " " " " " " " " " " " }18(x – 4) Sq.m = Rs. 1620

Cost of carpeting of 18x – 18(x – 4)=Rs. (2160-1620)

\text {" " " " " " " " " " " " }18x – 18x + 72 = Rs. 540

\text {" " " " " " " " " " " " } 72 \mathrm{Sq} . \mathrm{m} .=Rs. 540

If Rs. 540, cost of carpeting of 72 Sq.m

” 1 \text {" " " " " " " " " " " " } \frac{72}{540} \mathrm{Sq} \cdot \mathrm{m}

” 1 \text {" " " " " " " " " " " " } \frac{72 \times 2160}{540} \mathrm{Sq} . \mathrm{m} \\

=288 \mathrm{Sq} . \mathrm{m}

\therefore \quad Area of Rectangle =288 Sq.m

or, 18x = 288

or, x =\frac{288}{18}

\therefore \quad x = 16

\therefore \quad \text { Breadth of Rectangle }=16 \mathrm{~m} \\

\text { Perimeter " " " " " " "} =2(\text { Length }+ \text { Breadth }) \\

=2(18 \mathrm{~m}+16 \mathrm{~m}) \\

=2 \times 34 \mathrm{~m}=68 \mathrm{~m}.\\

Area of Rectangle = 288 Sq.m. (Ans.)

Question 17

The length of diagonal of a rectangular land is 15 meter and the difference of length and breadth is 3 meter. Let us calculate perimeter and area.

Solution

Let the length of the rectangular land be x

and Breadth ” ” ” ” ” ” y

According to the condition of the problem,

\sqrt{x^2+y^2}=15

or, x^2+y^2=225

And x – y = 3

or, x = 3 + y

Putting the value of x in equation (i)

(3+y)^2+y^2=225

or, (3)^2+2 \cdot 3 \cdot y+y^2+(y)^2=225

or, 9+6 y+y^2+y^2-225=0

or, 2 y^2+6 y-216=0

or, y^2+3 y-108=0

or, y^2+12 y-9 y-108=0

or, y(y+12)-9(y+12)=0

or, (y+12)(y-9)=0

either, y + 12 = 0

y = -12

or, y – 9 = 0

y = 9

\therefore Length can not be negative.

\therefore y = 9

From (ii),

x = 3 + y

= 3 + 9 = 12

\therefore Length =12 \mathrm{~m} . \quad Breadth =9 \mathrm{~m}.

\therefore Perimeter of the rectangular land

=2 \text { (Length }+ \text { Breadth) } \\

=2(12 \mathrm{~m}+9 \mathrm{~m}) \\

=2 \times 21 \mathrm{~m} \\

=42 \mathrm{~m} .

Area of the rectangular land

=\text { length } \times \text { breadth } \\

=12 \mathrm{~m} \times 9 \mathrm{~m}=108 \text { Sq.m (Ans.) }

Question 18

Let us calculate what is the longest size of the square tile that can be used for paving the rectangular courtyard with measurement of 385 meter × 60 meter and also find the number of tiles.

Solution

First we find the H.C.F of 385 and 60

\therefore \quad H.C.F of 385 and 60 = 5

Side of the square tile = 5m

Area of rectangular courtyard = 385 \mathrm{~m} \times 60 \mathrm{~m}

Area of one square tile = (\text { Side })^2

=(5)^2 \\

=25 \mathrm{Sq} \cdot \mathrm{m} .

\therefore \quad \text { No. of tiles } =\frac{385 \times 60}{25} \\

=924 \text { (Ans.) }

(M.C.Q) :

Question 19 (i)

The length of diagonal of square is 12 \sqrt{2} \mathrm{~m}. The area of square is

(a) 288 \mathrm{sq} \cdot \mathrm{m}

(b) 144 \mathrm{~m}^2

(c) 72 \mathrm{~m}^2

(d) 18 \mathrm{~m}^2

Solution

Length of diagonal of square 12 \sqrt{2} \mathrm{~m}

\therefore \quad \text { Side } \sqrt{2}=12 \sqrt{2} \mathrm{~m}.

\therefore \quad \text { Side of a square } =12 \mathrm{~m} \\

\therefore \quad \text { Area of square } =(\text { Side })^2 \\

=(12)^2 \\

=144 \mathrm{~m}^2

\therefore (b) is correct option

Question 19 (ii)

If the area of square is A_1 \mathrm{sq}. units and the area of square drawn on the diagonal of that square is A_2 sq. unit, then the ratio of A_1: A_2 is

(a) 1: 2

(b) 2: 1

(c) 1: 4

(d) 4: 1

Solution

\quad Let A_1=a^2

and A_2=(a \sqrt{2})^2=2 a^2

\therefore A_1: A_2=1: 2

\therefore (a) is correct option

Question 19 (iii)

If a rectangular place of which length and breadth are 6 meter and 4 meter is desired to pave it with 2dm. square tiles, then the numbers of tiles is to be required

(a) 1200

(b) 2400

(c) 600

(d) 1800

Solution

Area of Rectangle = 6 \mathrm{~m} \times 4 \mathrm{~m}

=24 \mathrm{~m}^2

\text { Area of square }=2 \mathrm{dm} \times 2 \mathrm{dm} \\

=\frac{2}{10} \times \frac{2}{10} \mathrm{~m}^2 \\

\text { No. of tiles }=\frac{24}{\frac{2}{10} \times \frac{2}{10}}=\frac{24 \times 10 \times 10}{2 \times 2}=600

No. of tiles =\frac{24}{\frac{2}{10} \times \frac{2}{10}}=\frac{24 \times 10 \times 10}{2 \times 2}=600

\therefore \quad(c) is correct option

Question 19 (iv)

If a square and a rectangle having the same perimeter and their areas are S and R respectively then

(a) S = R

(b) \mathrm{S}>\mathrm{R}

(c) \mathrm{S}<\mathrm{R}

Solution

\therefore (b) is correct option

Question 19 (v)

If the length of diagonal of a rectangle is 10cm. and area is 62.5 sq.cm., then the sum of their length and breadth is

(a) 12 \mathrm{~cm}.

(b) 15 \mathrm{~cm}.

(c) 20 \mathrm{~cm}.

(d) 25 \mathrm{~cm}.

Solution

Given,

Length of diagonal = 10

\sqrt{(\text { Length })^2+(\text { Breadth })^2}=10

or, (\text { Length }+ \text { Breadth })^2-2.length \times breadth =100

or, (\text { Length }+ \text { Breadth })^2-2 \times 62.5=100

or, (\text { Length }+ \text { Breadth) }^2-125=100

or, (\text { Length }+ \text { Breadth })^2=100+125=225

or, (\text { Length }+ \text { Breadth })^2=(15)^2

\therefore Length + breadth = 15cm.

\therefore (b) is correct option

Short answer type :

Question 21 (i)

If the length of square is increased by 10%, then what percent of the area of square will be increased?

Solution

Let the side of square be a

\therefore Area of square =\mathrm{a}^2

If the length of square is increased by 10%

Side of square = a + 10% of a

= a+\frac{10}{100} \times a \\

= a+\frac{a}{10}=\frac{11 a}{10} \\

\text { Area of square } =\left(\frac{11 a}{10}\right)^2 \\

=\frac{121 a^2}{100} \\

\text { Increased area of square } =\frac{121 a^2}{100}-a^2=\frac{121 a^2-100 a^2}{100}=\frac{21 a^2}{100}

Percentage of the area of square will be increased

=\frac{21 a^2}{\frac{100}{a^2}} \times 100 \\

=21 \% \text { (Ans.) }

Question 21 (ii)

If the length is increased by 10% and breadth is decreased by 10% of a rectangle, then what percent of area will be increased or decreased?

Solution

Let’ l ‘ be the length of rectangle.

and ‘b'” ” breadth ” “

Area of rectangle = l \times b

If length is increased by 10% and breadth is decreased by 10%

\therefore \text { Increased length } =l+10 \% l \\

=l+\frac{10}{100} \times l \\

=l+\frac{l}{10}=\frac{11 l}{10}

Decreased beadth =\mathrm{b}-10 \% of \mathrm{b}

=b-\frac{10}{100} \times b \\

=b+\frac{b}{10}=\frac{9 b}{10} \\

\text { Area }=\frac{11 l}{10} \times \frac{9 b}{10}=\frac{99 l b}{100}

\text { Decreased area } =m-\frac{99 l b}{100} \\

=\frac{l b}{100}

\text { Percentage of area will be decreased } =\frac{l b}{100} \\

= lb \times 100 \% \\

=1 \% \text { (Ans.) }

Question 21 (iii)

The length of the diagonal of a rectangle is 5cm. The length of perpendicular on a breadth of rectangle from intersecting point between two diagonals is 2cm. What is the length of breadth?

Solution

47E27AAB 8A8F 4D7F 891C 65C59FAADCD2

From the figure,

\mathrm{AC} =5 \mathrm{~cm} \\

\mathrm{OE} =2 \mathrm{~cm}, \mathrm{OF}=2 \mathrm{~cm} \\

\therefore \quad \mathrm{EF}=\mathrm{BC} =2 \mathrm{~cm}+2 \mathrm{~cm} \\

= 4 \mathrm{~cm}

Let breadth of rectangle be b Then,

\sqrt{b^2+(4)^2}=5 \\

\text { or, } b^2+16=25 \\

\text { or, } b^2=25-16 \\

\text { or, } b^2=9 \\

\text { or, } b^2=3^2 \\

\therefore \quad b=3 \\

\therefore \quad \text { Length of breadth }=3 \mathrm{~cm}

Question 21 (iv)

If the length of perpendicular from the intersecting point between two diagonals on any side of square is 2 \sqrt{2} \mathrm{~cm}, then wila is inc ientgn of each diagonal of square?

Solution

76BFFA55 77C9 499E 816C 9FEDD975022F

\therefore \mathrm{EG}=\mathrm{FG}=2 \sqrt{2} \mathrm{~cm}.

\mathrm{EF} =(2 \sqrt{2}+2 \sqrt{2}) \mathrm{cm} \\

=4 \sqrt{2} \mathrm{~cm} \\

\therefore \quad \mathrm{EF} =\mathrm{BC}=4 \sqrt{2} \mathrm{~cm}

\text { Length of diagonal }=\operatorname{Side} \sqrt{2}

=4 \sqrt{2} \times \sqrt{2}

=4 \times 2 \mathrm{~cm}=8 \mathrm{~cm} \text {. (Ans.) }

Question 21 (v)

The perimeter of a rectangle is 34cm. and area is 60sq. cm. What is the length of each diagonal?

Solution

Let ‘ l ‘ be the length and ‘ b ‘ be the breadth of the rectangle

Perimeter =34 \mathrm{~cm}.

or, 2(l+b)=34

or, l+\mathrm{b}=17

\therefore \quad l=17-b

\therefore \quad Area =60 Sq.cm.

l \times \mathrm{b}=60

or, (17-b) \times b=60

or, \quad 17 b-b^2=60

or, b^2-17 b+60=0

or, b^2-12 b-5 b+60=0

or, b(b-12)-5(b-12)=0

or, (b-12)(b-5)=0

either,

b – 12 = 0 \quad \text { or, } b-5=0 \\

b = 12 \quad b = 5

\therefore Breadth is always less than length

\therefore \quad Breadth = 5cm

\therefore \quad l=17-5=12 \\

\therefore \quad \text { Length }=12 \mathrm{~cm}

\text { Length of each diagonal } =\sqrt{l^2+\mathrm{b}^2} \\

=\sqrt{(12)^2+(5)^2} \mathrm{~cm} . \\

=\sqrt{144+25} \mathrm{~cm} . \\

=\sqrt{169} \mathrm{~cm} . \\

=13 \mathrm{~cm} . \quad \text { (Ans.) }


Let us work out – 15.2

Question 1

Let us write by calculating the area of the following regions:

98FAA98B E2ED 4EE0 A450 499AD041CCE0

Solution

D5F95B3F C696 4E07 ABB3 A7BE0A1A2756

\text { Area of } \triangle A B C=\frac{\sqrt{3}}{4} \times(10)^2 \\

=\frac{\sqrt{3}}{4} \times 100 \\

=25\sqrt{3} \text { sq.cm } \\ (Ans.)

758B9250 3CDB 4ED0 A0F3 B02ED03708A9

Area of \triangle \mathrm{ABC} =\frac{1}{2} \times 8 \times \sqrt{(10)^2 - (\frac{8}{2} )^2}

=4 \times \sqrt{100-16} \\

=4 \times \sqrt{84} \text { Sq. units. } \\

=4 \times \sqrt{4 \times 21} \text { Sq. units. } \\

=4 \times 2 \sqrt{21} \text { Sq. units. } \\

=8 \sqrt{21 \mathrm{Sq} \text {. units. }} \text { (Ans.) }

929860C1 79E9 4F16 8868 241347A04BEB

Area of Trapazium \mathrm{ABCD}=\frac{1}{2}(\mathrm{AD}+\mathrm{BC}) \times \mathrm{CD}

=\frac{1}{2}(5+4) \times 3 \\

=\frac{1}{2} \times 9 \times 3 \\

=\frac{27}{2} \text { Sq. Units } \\

=13.5 \text { Sq. units. }

FD5751AE ACD3 4D1E A053 5F1BDEC982DA

\text { Area of Trapazium }=\frac{1}{2}(\mathrm{AD}+\mathrm{CD}) \times \mathrm{AD}

=\frac{1}{2}(15+40) \times 9 \\

=\frac{1}{2} \times 55 \times 9 \\

=\frac{495}{2} \\

=247.5 \text { Sq.cm (Ans.) }

\mathrm{AC}=42 \mathrm{~cm}, \mathrm{CD}=38 \mathrm{~cm}

\because \angle \mathrm{ADC}=90^{\circ}

We know that,

008D1BD8 6EA8 4877 9B66 7C2D27D78340

A D^2 =A C^2-C D^2 \\

=(42)^2-(38)^2 \\

=(42+38(42-38) \\

=80 \times 4=320

\therefore \quad A D =\sqrt{320} \\

=\sqrt{4 \times 4 \times 2 \times 2 \times 5} \\

=4 \times 2 \sqrt{5}=8 \sqrt{5} \mathrm{~cm}

\therefore \quad \text { Area of } \mathrm{ABCD} =\mathrm{CD} \times \mathrm{AD} \\

=38 \times 8 \sqrt{5} \text { Sq.cm. } \\

=304 \sqrt{5} \text { Sq.cm. (Ans.) }

Question 2

The perimeter of an equilateral triangle is 48cm. Let us write by calculating its area.

Solution

\therefore The perimeter of an equilateral triangle = 48cm.

\therefore \quad Side of the equilateral triangle

=\frac{48}{3} \mathrm{~cm} . \\

=16 \mathrm{~cm} .

\therefore \quad Area of the equilateral triangle

=\frac{\sqrt{3}}{4} \times(16)^2 \\

=\frac{\sqrt{3}}{4} \times 256 \\

=44 \sqrt{3} \mathrm{~cm} . \quad \text { (Ans.) }

Question 3

If the height of an equilateral triangle ABC is 5 \sqrt{3}. Let us write by calculating the area of this triangle.

Solution

0B238916 7770 4B66 9F27 333C1447B737

The height of an equilateral triangle \mathrm{ABC}=5 \sqrt{3} \mathrm{~cm}. We know that,

\therefore \frac{\sqrt{3}}{2} \times \text { side }=5 \sqrt{3}

or, \frac{\text { Side }}{2}=5

\therefore \quad Side = 10

\therefore \quad Side of an equilateral triangle = 10cm.

\therefore Area of an equilateral triangle.

=\frac{\sqrt{3}}{4} \times(10)^2 \\

=\frac{\sqrt{3}}{4} \times 100 \text { Sq.cm } \\

=25 \sqrt{3} \text { Sq.cm. }(Ans.)

Question 4

If each equal side of an isosceles triangle ABC is 10cm. and length of base is 4cm. Let us write by calculating the area of \triangle \mathrm{ABC}.

Solution

IMG 3362

Each equal side of an isosceles triangle ABC = 10cm.

Length of base = 4cm.

\text { Area of } \triangle \mathrm{ABC} =\frac{1}{2} \times 4 \times \sqrt{(10)^{2}-(_{2}^{4})^{2}} \\

=2 \times \sqrt{100-4} \\

=2 \times \sqrt{96} \\

=2 \times \sqrt{4 \times 4 \times 6} \\

=2 \times 4 \sqrt{6} \\

=8 \sqrt{8} \text { Sq.cm. (Ans.) }

Question 5

If length of base of any isosceles triangle is 12cm and length of each equal side is 10cm. Let us write by calculating the area of that isosceles triangle.

Solution

IMG 3363

Each equal side of an isosceles triangle ABC = 10cm.

Length of base = 12cm.

\therefore \quad \text { Area of } \triangle \mathrm{ABC} =\frac{1}{2} \times 12 \times \sqrt{(10)^{2}-(\frac{12}{2})^{2}} \\

=6 \times \sqrt{100-36} \\

=6 \times \sqrt{64} \\

=6 \times 8= 48 \text { Sq.cm. (Ans.) }

Question 6

Perimeter of any isosceles triangle is 544cm. and length of each equal side is \frac{5}{6} th of length of base. Let us wirte by calculating the area of this triangle.

Solution

Let the length of base be x

\therefore Length of each side =\frac{5}{6} \times x=\frac{5 x}{6}

\therefore \quad Perimeter =544 \mathrm{~cm} . \therefore \quad Perimeter =544 \mathrm{~cm}.

or, x+\frac{5 x}{6}+\frac{5 x}{6}=544

or, \frac{6 x+5 x+5 x}{6}=544

or, \frac{16 x}{6}=544

\text { or, } \frac{x}{6}=34 \\

\therefore x = 204

\therefore Length of the base \quad = 204 \mathrm{~cm} .

\text { Length of each side } =\frac{5}{6} \times 204 \\

= 170cm

\text { Area of } \mathrm{ABC}=\frac{1}{2} \times 204 \times \sqrt{(170)^{2}- \frac{204}{2} } \\

=102 \times \sqrt{28900-10404} \\

=102 \times \sqrt{18496} \\

=102 \times 136 \\

=13872 \text { Sq.cm. (Ans.) }

Question 7

If the length of hypotenuse of an isosceles right-angled triangle is 12 \sqrt{2} \mathrm{~cm}. Let us write by calculating the area of this triangle.

Solution

IMG 3364

Let the length of equal side be x

We have,

A B^{2}+B C^{2}=A C^{2}

or, x^{2}+x^{2}=(12 \sqrt{2})^{2}

or, 2 x^{2}=144 \times 2

or, x^{2}=144

or, x=\sqrt{144}

\therefore x = 12

\therefore Length of equal side be 12cm.

\therefore \text { Area of } \triangle \mathrm{ABC} =\frac{1}{2} \times 12 \times 12 \text { Sq.cm. } \\

=72 \text { Sq.cm (Ans.) }

Question 8

Pritha drew a parallelogram of which lengh of two diagonals are 6 \mathrm{~cm} \ and \ 8 \mathrm{~cm} and each angle between two diagonals is 90^{\circ}. Let us write the length of sides of parallelogram and what type of parallelogram it is?

Solution

IMG 3365

\text { Let } A C=6 \mathrm{~cm}, \quad B D=8 \mathrm{~cm} . \\

\therefore \quad \mathrm{AO}=\mathrm{OC}=3 \mathrm{~cm} \\

\mathrm{BO}=\mathrm{OD}=4 \mathrm{~cm} . \\

\therefore \quad \angle C O D=90^{\circ} \\

\triangle \mathrm{In} \triangle \mathrm{COD} \\

\mathrm{CD}^{2}=O C^{2}+\mathrm{OD}^{2} \\

=(3)^{2}+(4)^{2} \\

=9+16=25 \\

\therefore \quad \mathrm{or}, \quad \mathrm{CD}=\sqrt{25}=5 \mathrm{~cm} . \\

\therefore \quad A B=B C=C D=D A=5 \mathrm{~cm} .

Hence ABCD is rhombus

Question 9

The ratio of the length of sides of a triangular park of our village is 2 : 3 : 4; perimeter of park is 216 meter.

(i) Let us write by calculating the area of the park.

(ii) Let us write by calculating how long is to be walked from opposite vertex of longest side to that side straightly.

Solution

IMG 3366

Let a = 2x

b = 3x

c = 4x

\therefore \quad Perimeter =216m.

or, a + b + c = 216m

or, 2x + 3x + 4x = 216

or, 9x = 216

or, x =\frac{216}{9}

\therefore \quad x =24 \\

\therefore \quad a =2 x=2 \times 24=48 \mathrm{~m} \\

b = 3 \mathrm{x}=3 \times 24=72 \mathrm{~m} \\

c = 4 \mathrm{x}=4 \times 24=96 \mathrm{~m} \\

\therefore \quad s =\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2} \\

=\frac{48+72+96}{2}=\frac{216}{2}=108 \mathrm{~m}.

\text { Area of the park } =\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\

=\sqrt{108(108-48)(108-72)(108-96)} \\

=\sqrt{108 \times 60 \times 36 \times 12} \\

=\sqrt{36 \times 3 \times 12 \times 5 \times 36 \times 12} \\

=36 \times 12 \sqrt{5 \times 3} \\

=432 \sqrt{15} \mathrm{Sq} \cdot \mathrm{m} \\

\text { Area of the park } =432 \sqrt{15} \mathrm{Sq} \cdot \mathrm{m}

Area of the park =432 \sqrt{15} \mathrm{Sq} \cdot \mathrm{m}

or, \quad \frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}=432 \sqrt{15}

or, \frac{1}{2} \times 96 \times \mathrm{AD}=432 \sqrt{15}

\text { or, } \mathrm{AD}=\frac{432 \sqrt{15}}{48}

\text { or, } \mathrm{AD}=9 \sqrt{15 \mathrm{~m}} \text { (Ans.) }

Question 10

The length of three sided of a triangular field of village of Paholampur are 26 meter, 28 meter and 30 meter.

(i) Let us write by calculating what will be the cost of planting grass in the triangular field at the rate of Rs.5 per sq. meter.

(ii) Let us write by calculating how much cost will be for fencing around three sides at the rate of Rs 18 per meter leaving a space 5 meter for constructing entrance gate of that triangular field.

Solution

IMG 3367

\text { Let } a=26 \mathrm{~m} \\

\mathrm{~b}=28 \mathrm{~m} \\

\mathrm{c}=30 \mathrm{~m} \\

\mathrm{~s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2} \\

=\frac{26+28+30}{2}=\frac{84}{2}=42 \mathrm{~m} . \\

Area of the triangular field =\sqrt{s(s-a)(s-b)(s-c)} =\sqrt{42(42-26)(42-28)(42-30)} \\

=\sqrt{42 \times 16 \times 14 \times 12} \\

=\sqrt{14 \times 3 \times 4 \times 4 \times 4 \times 14 \times 2 \times 2 \times 3} \\

=14 \times 4 \times 3 \times 3 \\=336 \text { Sq.m }

Cost of planting grass in the triangular field =336 \times 5

= Rs. 1680 (Ans.)

Perimeter of the triangular field =26 \mathrm{~m}+28 \mathrm{~m}+30 \mathrm{~m}=84 \mathrm{~m}

But leaving a space 5m for constructing entrance gate,

\therefore \quad \text { Length for fencing around three sides }=84 \mathrm{~m}-5 \mathrm{~m}

= 79m

\text { Total cost }=\text { Rs. } 79 \times 18=\text { Rs. } 1422 \text { (Ans.) }

Question 11

Shakil draws an equilateral triangle PQR. I draw three perpendiculars from a point inside of that equilateral triangle on three sides, of which lengths are 10cm, 12cm . and 8cm. Let us write by calculating the area of the triangle.

Solution

IMG 3368

Let ‘a’ be the side of an equilateral triangle.

Area of the triangle PQR =\frac{\sqrt{3}}{4} \times(\mathrm{a})^{2}

=\frac{\sqrt{3}}{4} \times a^{2}

According to the condition of the problem

\frac{\sqrt{3}}{4} \times \mathrm{a}^{2}=\frac{1}{2} \mathrm{a} \times 10+\frac{1}{2} \times a \times 12+\frac{1}{2} \times a \times 8

or, \frac{\sqrt{3}}{4} \times a^{2}=5 a+6 a+4 a

or, \frac{\sqrt{3}}{4} \times a^{2}=15 a

or, \frac{\sqrt{3}}{4} \times a=15 \quad[\because a \neq 0]

or, \sqrt{3} \mathrm{a}=60

or, a=\frac{60}{\sqrt{3}}

\text { or, }=\frac{20 \times \sqrt{3} \times \sqrt{3}}{\sqrt{3}} \\

\therefore \quad a=20 \sqrt{3}

\text { Area of } \triangle P Q R =\frac{\sqrt{3}}{4} \times(20 \sqrt{3})^{2} \\

=\frac{\sqrt{3}}{4} \times 20 \times 20 \times 3 \\

=300 \sqrt{3} \text { Sq.m (Ans.) }

Question 12

The length of each equal side of an isosceles triangle is 20m and the angle included between them is 45^{\circ}. Let us write by calculating the area of triangle.

Solution

IMG 3369

In \triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=20 \mathrm{~m} \ and \ \angle \mathrm{A}=45^{\circ},

CD is drawn perpendicular to AB

Now, if we take AB as base of the triangle,

Then its altitude is CD.

According to construction, \angle \mathrm{ACD}=45^{\circ}, \therefore \mathrm{AD}=\mathrm{CD}

In the right angled triangle ADC,

\mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}{ }^{2}=(20)^{2} \mathrm{Sqm}=400 \mathrm{Sq} \cdot \mathrm{m} \\

\therefore \quad 2 \mathrm{CD}^{2}=400 \mathrm{Sq} \cdot \mathrm{m}[\because \mathrm{AD}=\mathrm{CD}]

\therefore \quad 2 \mathrm{CD}^{2}=200 \text { Sq.m } \therefore \mathrm{CD}=\sqrt{200} \\

\text { Area of the triangle }=\frac{1}{2} \times \mathrm{AB} \times \mathrm{CD} \\

=\frac{1}{2} \times 20 \times 10 \sqrt{2} \\

=100 \sqrt{2} \text { Sq } \mathrm{m} \text {. } \\

Question 13

The length of each equal side of an isosceles triangle is 20cm, and the angle included between them is 30^{\circ}. Let us write by calculating the area of triangle.

Solution

IMG 3370

In \triangle A B C \\

AB = AC = 20cm

We draw perpendicular CD on AB

Then, \angle A D C=90^{\circ},

\angle \mathrm{CAD}=30^{\circ} (Given)

and, \angle \mathrm{ACD}=60^{\circ}

\therefore In any right angled triangle,

the three angles are 90^{\circ}, 60^{\circ} and \ 30^{\circ},

Then,\mathrm{CD}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 20 \mathrm{~cm}=10 \mathrm{~cm}

\text { Area of } \triangle \mathrm{ABC} =\frac{1}{2} \mathrm{AB} \times \mathrm{CD} \\

=\frac{1}{2} 10 \times 10 \text { Sq.cm } \\

=100 \text { Sq.cm (Ans.) }

Question 14

If the perimeter of an isosceles right-angled triangle is (\sqrt{2}+1) \mathrm{cm}. Let us write by calculating the length of hypotenuse and area of triangle.

Solution

IMG 3371

Let the equal sides be ‘ a ‘

And length of the base be ‘ b ‘

\therefore \quad Perimeter =\sqrt{2}+1

or, a+a+b=\sqrt{2}+1

or, 2 a+b=\sqrt{2}+1…………. (i)

We have,

A C^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}

or, b^{2}=a^{2}+a^{2}

or, b^{2}=2 a^{2}

or, b=\sqrt{2 a^{2}}

or, b=\sqrt{2} \mathrm{a}…………. (ii)

From (i),

2 a+b=\sqrt{2}+1

or, 2 a+\sqrt{2 a}=\sqrt{2}+1 ………….by (ii)

or, \sqrt{2} a(\sqrt{2}+a)=\sqrt{2}+1

or, \sqrt{2} \mathrm{a}=1

\therefore a=\frac{1}{\sqrt{2}}

From (ii),

b=\sqrt{2 a} \\

= \sqrt{2} \times \frac{1}{\sqrt{2}} \quad[\because a=1 \sqrt{2}] \\

= 1

\therefore \quad Length of the hypotenuse = 1cm.

\text { Area of the triangle } =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB} \\

=\frac{1}{2} \times \mathrm{a} \times \mathrm{a} \\

=\frac{1}{2} \times \mathrm{a}^{2} \\

=\frac{1}{2} \times\left(\frac{1}{\sqrt{2}}\right)^{2} \\

=\frac{1}{2} \times \frac{1}{2} \\

=\frac{1}{4}=0.25 \text { Sq.cm }(Ans.)

Question 15

Maria cycling at a speed of 18km per hour covers along the perimeter of an equilateral triangular field in 10 minutes. Let us write by calculating the time required for Maria to go directly to the mid point of the side of the field starting from its opposite vertex.

Solution

IMG 3372

Total distance = speed × time

=18 \times \frac{10}{60} \mathrm{Km} . \\

= 3km.

Perimeter of equilateral trianglar park = 3 km .

\text { length of each side }=\frac{3}{3} \mathrm{Km} .=1 \mathrm{~km} \text {. }

Distance between mid point of a side and its opposite vertex = AD

=\frac{\sqrt{3}}{2} \times \text { side }=\frac{\sqrt{3}}{2} \times 1 \mathrm{~km}=\frac{\sqrt{3}}{2} \mathrm{~km}

Time taken to go from opposite vertex to mid-point of a side

=\frac{\text { Distance }}{\text { Speed }}

=\frac{\sqrt{3}}{2 \times 18} hours

=\frac{\sqrt{3}}{2 \times 18} \times 60 minutes

=\frac{5 \sqrt{3}}{3} minutes(Ans.)

Question 16

If the length of each side of an equilateral triangle is increased by 1 meter, then its area will be increased by \sqrt{3} sq. meter. Let us write by calculating the length of side of equilateral triangle.

Solution

Let ‘ x ‘ be the side of an equilateral triangle.

\text { Area of the equilateral triangle } =\frac{\sqrt{3}}{4} \times(x)^{2} \\

=\frac{\sqrt{3}}{4} x^{2}

If length of each side of an equilateral triangle is increased by 1 meter,

Then, side of an equilateral triangle (x + 1)

\therefore \text { Area of the equilateral triangle }=\frac{\sqrt{3}}{4} \times(x+1)^{2}

According to the condition of problem,

\frac{\sqrt{3}}{4} \times(x+1)^{2}-\frac{\sqrt{3}}{4} x^{2}=\sqrt{3}

or, \frac{\sqrt{3}}{4}\{(x+1)^{2}-x^{2}\}=\sqrt{3}

or, \frac{1}{4}(x+1+x)(x+1-x)=1

or, \frac{1}{4}(2 x+1)=1

or, 2x + 1 = 4

or, 2x = 4 – 1

or, 2x = 3

or, \mathrm{x}=\frac{3}{2} \quad \therefore \mathrm{x}=1.5

\therefore \quad Length of side equilateral triangle = 1.5m.

Question 17

The area of an equilateral triangle and area of square are in the ratio \sqrt{3} : 2 . If the length of diagonal of square is 60cm. Let us write by calculating perimeter of an equilateral triangle.

Solution

Let ‘a’ be the side of a square

Then, diagonal of square = 60cm.

\therefore \quad \mathrm{a} \sqrt{2}=60 \mathrm{~cm}

or, a=\frac{60}{\sqrt{2}} \mathrm{~cm}

By the problem,

Area of equilateral triangle : area of square =\frac{\sqrt{3}}{2}

\text { or, } \frac{\text { Area of equilateral triangle }}{\text { Area of square }}=\frac{\sqrt{3}}{2} \\

\text { or, } \frac{\text { Area of equilateral triangle }}{(\frac{60}{\sqrt{2}})^{2}}=\frac{\sqrt{3}}{2} \\

\text { or, } \frac{\text { Area of equilateral triangle }}{\frac{3600}{2}}=\frac{\sqrt{3}}{2}

or, Area of equilateral triangle =900 \sqrt{3}

or, \frac{\sqrt{3}}{4}(\text { Side })^{2}=900 \sqrt{3}

or, (\text { side })^{2}=3600 \\

or, \text { Side }=\sqrt{3600} \\

=60 \mathrm{~m} \text {. } \\

Perimeter of an equilateral triangle

=3 \times \text { side }=3 \times 60 \mathrm{~m}=180 \mathrm{~m}(Ans.)

Question 18

Length of hypotenuse and perpendicular of a right-angled triangle are 13cm and 30cm. Let us write by calculating the area of triangle.

Solution

Length of hypotenuse = 13cm.

Perimeter of right angled triangle = 30cm.

\therefore Sum of remaining sides other than

hypotenuse = (30 – 13)cm = 17cm.

Let ‘ p ‘ be the perpendicular and ‘ b ‘ be the base of a right angled triangle.

\therefore \mathrm{p}+\mathrm{b}=17 ……….. (i)

Also,

p^{2}+b^{2}=h^{2}

or, (p+b)^{2}-2 p b=(13)^{2}

or, (17)^{2}-2 \mathrm{pb}=(13)^{2}

or, 289-2 \mathrm{pb}=169

or, -2 \mathrm{pb}=169-289

\text { or, }+2 \mathrm{pb}=f 120 \\

\text { or, } \mathrm{pb}=\frac{120}{2} \\

\therefore \mathrm{pb}=60

Again,

p^{2}+b^{2}=h^{2}

or, (p-b)^{2}+2 p b=h^{2}

or, (p-b)^{2}+2 \times 60=(13)^{2}

or, (\mathrm{p}-\mathrm{b})^{2}+120=169

or, (p-b)^{2}=169-120

or, (p-b)^{2}=49

or, (p-b)=\sqrt{49}

\therefore p – b = 7 ……….. (ii)

\therefore \quad p + b = 17 ......... (i) \\ \underline{p-b =7 ........... (ii)} \\ 2 \mathrm{p}=24(by \ adding)

or, p=\frac{24}{2}

\therefore \mathrm{p}=12

Putting the value of p in equation (i)

p + b = 17

or, 12 + b = 17

\text { or, } b=17-12 \quad \therefore b=5

\text { Area of right angled triangle }

=\frac{1}{2} \times \mathrm{b} \times \mathrm{p} \\

=\frac{1}{2} \times 5 \times 12 \\

=30 \text { Sq. cm. (Ans.) }

Question 19

The lengths of the sides containing the right angle are 12cm and 5cm . Let us write by calculating the length of perpendicular drawn from vertex of right angle on hypotenuse.

Solution

IMG 3373

Let \mathrm{AB}=12 \mathrm{~cm},

\mathrm{BC}=5 \mathrm{~cm}

We know that,

A C^{2}=A B^{2}+B C^{2}

or, \mathrm{AC}^{2}=(12)^{2}+(5)^{2}

or, \mathrm{AC}^{2}=144+25

or, \mathrm{AC}^{2}=169

or, \mathrm{AC}^{2}=\sqrt{169}

\therefore \quad \mathrm{AC}=13

\therefore Area of \triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB}

=\frac{1}{2} \times 5 \times 12

= 30 Sq. \mathrm{cm}

\therefore \quad \text{Area of} \triangle \mathrm{ABC}=30 Sq.cm.

or, \frac{1}{2} \times \mathrm{BD} \times \mathrm{AC}=30

or, \frac{1}{2} \times \mathrm{BD} \times 13=30

or, 13 \mathrm{BD}=60

or, \mathrm{BD}=\frac{60}{13}

or, \mathrm{BD}=4.615 \mathrm{~cm} (Approx)

\therefore \quadLength of the perpendicular =4.615 \mathrm{~cm} (Approx)(Ans.)

Question 20

The largest square is cut-out from a right-angled triangular region with length of 3cm, 4cm and 5cm respectively in such a way that the one vertex of square lies on hypotenuse of triangle. Let us write by calculating the length of side of square.

Solution

IMG 3374

Let \mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}

\mathrm{AC}=5 \mathrm{~cm}

Let \mathrm{BD}=\mathrm{DE}=\mathrm{EF}=\mathrm{BF}=\mathrm{a}

\text { Area of } \triangle A B C= \text { Area of } \triangle A E F+ \text { Area of Square } BDEF + \text { Area of } \triangle D E C

or \frac{1}{2} \times 3 \times 4=\frac{1}{2} \times(4-a) \times a+a^{2}+\frac{1}{2} \times(3-a) \times a

or, 12=(4-a) a+2 a^{2}+(3-a) a

or, 12=4 a-a^{2}+2 a^{2}+3 a-a^{2}

or, 12=7 a

or, a=\frac{12}{7}

\therefore \quad \text { Length of square } =\frac{12}{7} \mathrm{~cm} \\

=1 \frac{5}{7} \mathrm{~cm}(Ans.)

(M.C.Q):

Question 21 (i)

If each side of an equilateral triangle is 4cm, the measure of height is

(a) 4 \sqrt{3} \mathrm{~cm}

(b) 16 \sqrt{3} \mathrm{~cm}

(c) 8 \sqrt{3 \mathrm{~cm}}

(d) 2 \sqrt{3} \mathrm{~cm}

Solution

Height of an equilateral triangle

=\frac{\sqrt{3}}{2} \times(\text { side }) \\

=\frac{\sqrt{3}}{\cancel2} \times {\cancel 4} \\

=2 \sqrt{3} \mathrm{~cm}.

\therefore \quad (d) is correct option (Ans.)

Question 21 (ii)

An isosecles right-angled triangle of which the length of each side of equal two sides is a unit. The perimeter of triangle is

(a) (1+\sqrt{2}) a unit

(b) (2+\sqrt{2}) a unit

(c) 3a unit

(d) (3+2 \sqrt{2}) a unit.

Solution

IMG 3407

Let AB = a, BC = a

or, A C^2=a^2+a^2

or, \mathrm{AC}=\sqrt{2 \mathrm{a}^2}

or, \mathrm{AC}=\sqrt{2} \mathrm{a}

\therefore \quad \text{Perimeter of triangle} =a+a+\sqrt{2} a

=2 a+\sqrt{2} a

=(2+\sqrt{2}) a unit.

\therefore \quad (b) is correct option (Ans.)

Question 21 (iii)

If the area, perimeter and height of an equilateral triangle are a, s and h, then value of 2a/sh is

(a) 1

(b) \frac{1}{2}

(c) \frac{1}{3}

(d) \frac{1}{4}

Solution

We have,

\frac{2 a}{\operatorname{sh}}=\frac{2 \times \frac{\sqrt{3}}{4} \times(\text { side })^{2}}{3 \times \operatorname{side} \times \frac{\sqrt{3}}{2} \times \text { side }}=\frac{\frac{2}{4}}{\frac{3}{2}} \\

= \frac{2}{4} \times \frac{2}{3}=\frac{1}{3}

\therefore (c) is correct option (Ans.)

Question 21 (iv)

The length of each equal side of an isosceles triangle is 5cm. and length of base is 6cm The area of triangle is

(a) 18 \mathrm{sq} . \mathrm{cm}

(b) 12 \mathrm{sq} . \mathrm{cm}

(c) 15 \mathrm{sq} . \mathrm{cm}.

(d) 30 \mathrm{sq} . \mathrm{cm}.

Solution

\text { Area of triangle } =\frac{1}{2} \times 6 \times \sqrt{(5)^2-(\frac{6}{3})^2} \\

=\frac{1}{2} \times 6 \times \sqrt{25-9} \\

=3 \times \sqrt{16} \\

=3 \times 4=12 \text { Sq.cm. }

\therefore (b) is correct option (Ans.)

Question 21 (v)

D is such a point on AC of triangle ABC so that AD : C = 3 : 2; If the area of triangle ABC is 40 sq.cm, the area of triangle BDC is.

(a) 16sq.cm

(b) 24sq.cm.

(c) 15sq.cm.

(d) 30sq.cm

Solution

IMG 3408

Area of triangle ABC = 40 Sq.cm

or, \mathrm{AD}: \mathrm{DC}=3: 2

or, \triangle \mathrm{ABD}: \triangle \mathrm{BDC}

or, \frac{\triangle A B D}{\triangle B D C}=\frac{3}{2}

or, 2 \triangle \mathrm{ABD}=3 \triangle \mathrm{BDC}

or, \mathrm{ABD}=\frac{3}{2} \triangle \mathrm{BDC}

Also \triangle \mathrm{ABC}=\triangle \mathrm{ABD}+\triangle \mathrm{BDC}

or, \triangle \mathrm{ABC}={ }_2^3 \triangle \mathrm{BDC}+\triangle \mathrm{BDC}

or, \triangle \mathrm{ABC}=\frac{5}{2} \triangle \mathrm{BDC}

or, \triangle B D C={ }_5^2 \triangle A B C

= \frac{2}{\cancel{5}} \times \cancel{40} \mathrm{Sq} \cdot \mathrm{cm}

=16 \mathrm{Sqcm}.

\therefore (a) is correct option (Ans.)

Question 21 (vi)

The difference of length of each side of a triangle from its semiperimeter are 8cm, 7cm and 5cm respectively. The area of triangle is

(a) 20 \sqrt{7} \mathrm{Sq} . \mathrm{cm}

(b) 10 \sqrt{14} Sq.cm

(c) 20 \sqrt{14} \mathrm{Sq} . \mathrm{cm}

(d) 140 \mathrm{Sq} . \mathrm{cm}

Solution

Let, s – a = 8

s – b = 7

s – c = 5

adding these,

3s – (a + b + c) = 8 + 7 + 5

\text { or, } 3 s-2 s=20 \quad\left[\therefore s=\frac{a+b+c}{2}\right]

\therefore \mathrm{s}=20

Area of Triangle =\sqrt{s(s-a)(s-b)(s-c)} \\

=\sqrt{20 \times 8 \times 7 \times 5} \\

=\sqrt{5 \times 4 \times 4 \times 2 \times 7 \times 5} \\

=5 \times 4 \sqrt{2 \times 7} \\

=20 \sqrt{14} \mathrm{Sq} \cdot \mathrm{cm}

\therefore \quad (c) is correct option (Ans.)

Short answer type question:

Question 22 (i)

The numerical values of area and height of an equilateval triangle are equal. What is the length of side of triangle?

Solution

By question,

\quad \frac{\sqrt{3}}{4}(\text { side })^2=\frac{\sqrt{3}}{2} \times(\text { side }) \\

\text { or, } \frac{\text { side }}{2}=1 \\

\text { or, side }=2 \\

\text { Length of side of triangle }=2 \text { units }

\therefore Length of side of triangle = 2 units (Ans.)

Question 22 (ii)

If length of each side of an equilateral triangle is doubled, what percent of area will be increased of this. triangle?

Solution

Let ‘ a ‘ be the side of an equilateral triangle,

\therefore \quad \text { Area of the triangle }=\frac{\sqrt{3}}{4} \mathrm{a}^2

If length of each side of an equilateral triangle is doubled

\therefore \quad \text { Area of the triangle } =\frac{\sqrt{3}}{4}(2 a)^2 \\

=\frac{\sqrt{3}}{4} \times 4 a^2

Increase area of the triangle

=\frac{\sqrt{3}}{4} \times 4 a^2-\frac{\sqrt{3}}{4} a^2 \\

=\frac{\sqrt{3}}{4} \times 3 \mathrm{a}^2 \\

\text { Perimeter of increased in area }=\frac{\frac{\sqrt{3}}{4} \times 3 a^2}{\frac{\sqrt{3}}{4} \times a^2} \times 100 \% \\

=300 \% \text { (Ans.) } \\

Question 22 (iii)

If the length of each side of an equilateral is trippled.

What percent of area will be increased of this triangle?

Solution

Let ‘ a ‘ be the side of an equilateral triangle,

\therefore \text { Area of the triangle }=\frac{\sqrt{3}}{4} \mathrm{a}^2

If length of each side of an equilateral triangle is trippled

\therefore \quad \text { Area of the triangle } =\frac{\sqrt{3}}{4}(3 a)^2 \\

=\frac{\sqrt{3}}{4} \times 9 a^2

Increased area of the triangle

=\frac{\sqrt{3}}{4} \times 9 a^2-\frac{\sqrt{3}}{4} a^2 \\

=\frac{\sqrt{3}}{4} \times 8 a^2 \\

=\sqrt{3} \times 2 a^2

\text { Perimeter of increased in area } =\frac{\sqrt{3} \times 2 \mathrm{a}^2}{\sqrt{3}} \times 100 \% \\

=8 \times 100 \% \\

=800 \% \text { (Ans.) }

Question 22 (iv)

The lenght of sides of a right-angle triangle are (x – 2) cm, x cm and (x + 2) cm. How much length of hypotenuse is?

Solution

We have, (\text { hypotenuse} )^2=(\text { base })^2+(\text { Perpendicular })^2

(x+2)^2=(x-2)^2+(x)^2

or, (x+2)^2-(x-2)^2=(x)^2

or, 4 \cdot x \cdot 2=x^2

\text { or, } 8 x=x^2 \\

\text { or, } 8=x \quad [\therefore x \neq 0] \\

\therefore \quad x=8

\therefore \quad \text { Length of hypotenuse } =(x+2) \mathrm{cm} \\

=(8+2) \mathrm{cm} \\

=10 \mathrm{~cm} \text {. (Ans.) }

Question 22 (v)

A square drawn on height of equilateral triangle. What is the ratio of area of triangle and square?

Solution

Area of triangle : Area of square

=\frac{\sqrt{3}}{4} \times(\text { side })^2:\left(\frac{\sqrt{3}}{2} \times(\text { side })\right)^2 \\

=\frac{\sqrt{3}}{4} \times(\text { side })^2: \frac{\sqrt{3} \times \sqrt{3}}{4} \times(\text { side })^2 \\

= 1: \sqrt{3} \text { (Ans.) }


Let us work out – 15.3

Question 1

Ratul draws a parallelogram with a length of base 5cm. and height 4cm. Let us calculate the area of the parallelogram drawn by Ratul.

Solution

\text { Length of base }=5 \mathrm{~cm} \\

\text { Height }=4 \mathrm{~cm}

\text { Area of the parallelogram } =\text { base } \times \text { height } \\

=5 \mathrm{~cm} \times 4 \mathrm{~cm} \\

=20 \text { sq.cm. (Ans.) }

Question 2

The base of a parallelogram is twice its height. If the area of the shape of a parallelogram is 98 sq cm. then let us calculate the length and height of the parallelogram.

Solution

Let ‘ x ‘ be the height of a parallelogram

\therefore Base =2 \times height =2 \mathrm{x}

\therefore \text{Area of parallelogram} =98 sq. \mathrm{cm}.

or, Base × height = 98

or, 2x × x = 98

or, 2x^2 = 98

or, x^2-\frac{98}{2}

or, x^2=49

or, \mathrm{x}=\sqrt{49}

\therefore \quad \mathrm{x}=7

Length of base = 2x

=2 \times 7=14 \mathrm{~cm} \text {. }

Height of the parallelogram = x =7cm (Ans.)

Question 3

There is channel of parallelogram land beside our house of which lengths of adjacent sides are 15 meters and 13 meters. If the length of one diagonal is 14 meters, then let us calculate the area of shape of parallelogram land.

Solution

IMG 3409

Let, a =13 \mathrm{~cm} \\

b =14 \mathrm{~cm} \\

c =15 \mathrm{~cm}

s=\frac{a+b+c}{2}

=\frac{13 m+14 m+15 m}{2}=\frac{42}{2} m=21 m

\text { Area of } \triangle \mathrm{ABD} =\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\

=\sqrt{21(21-13)(21-14)(21-15)}

=\sqrt{21 \times 8 \times 7 \times 6} \\

=\sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 2 \times 3} \\

=2 \times 2 \times 3 \times 7 \\

=84 \mathrm{Sq} . \mathrm{m}

\text { Area of parallelogram } \mathrm{ABCD} =2 \times \text { Area of } \triangle \mathrm{ABD} \\

=2 \times 84 \mathrm{Sq} \cdot \mathrm{m}=168 \mathrm{Sq} \cdot \mathrm{m}

Question 4

Pritha draws a parallelogram of which adjacent sides are 25cm and 15cm and the length of the diagonal is 20cm. Let us write by calculating the height of the parallelogram which is drawn on the side of 25cm.

Solution

IMG 3410

Let, \mathrm{a}=25 \mathrm{~cm}

b=20 \mathrm{~cm} \\

c=15 \mathrm{~cm}

s=\frac{a+b+c}{2} \\

=\frac{25+20+15}{2}=\frac{60}{2}=30 \mathrm{~cm}

=\frac{25+20+15}{2}=\frac{60}{2}=30 \mathrm{~cm}

\text { Area of } \triangle A B D =\sqrt{s(s-a)(s-b)(s-c)} \\

=\sqrt{30(30-25)(30-20)(30-15)} \\

=\sqrt{30 \times 5 \times 10 \times 15} \\

=\sqrt{15 \times 2 \times 2 \times 5 \times 15} \\

=2 \times 5 \times 15 \\

=150 \text { Sq.cm }

Area of parallelogram = 2 \times Area of \triangle \mathrm{ABD}

=2 \times 150 \text { Sq.cm. } \\

=300 \text { Sq. } \\

\therefore \quad Base \times height =300 Sq. \mathrm{cm}.

or, 25 \times height =300

or, height ^2=\frac{300}{25}

\therefore height =12 \mathrm{~cm}(Ans.)

Question 5

The length of adjacent two sides are 15cm. and 12cm. of a parallelogram distance between two smaller sides is 7.5cm. Then let us calculate the distance between the longer two sides.

Solution

IMG 3411

Let, A B=15 \mathrm{~cm}

\mathrm{BC}=12 \mathrm{~cm} \\

\mathrm{AE}=7.5 \mathrm{~cm} .

Area of the \triangle A B C

=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AE} \\

=\frac{1}{2} \times 12 \times 7.5 \mathrm{Sq} . \mathrm{cm} . \\

=45 \text { Sq.cm. }

Let the distance between the longer two sides be ‘ x ‘

\therefore \text { Area of } \triangle \mathrm{ACD}=\text { Area of } \triangle \mathrm{ABC}

or, \frac{1}{2} \times B C \times distance between the longer two sides = 45

or, \frac{1}{2} \times 15 \times x=45

or, \frac{15 x}{2}=45

or, \frac{x}{2}=3

\therefore \quad x = 6

\therefore \quad The distance between the longer two sides = 6cm (Ans.)

Question 6

If the measure of two diagonals of a rhombus are 15 meter and 20 meter, then let us write by calculating its perimeter, area and height.

Solution

IMG 3412

\text { Let, } \mathrm{AC} =15 \mathrm{~m} \\

\mathrm{BD} =20 \mathrm{~m}

\mathrm{AO}=\mathrm{OC}=\frac{15}{2} \mathrm{~m} \\

\mathrm{BO}=\mathrm{OD}=\frac{20}{2} \mathrm{~m}=10 \mathrm{~m}

Area of Rhombus ABCD

=\frac{1}{2} \mathrm{AC} \times \mathrm{BD} \\

=\frac{1}{2} 15 \times 20 \mathrm{~m} \\

=150 \text { Sq.m (Ans.) }

In \triangle \mathrm{OAB}, \quad \angle \mathrm{AOB}=90^{\circ}

A B^2=A O^2+O B^2

or, A B^2=\left(\frac{15}{2}\right)^2+(10)^2

or, A B^2=\frac{225}{4}+100^2

or, \mathrm{AB}^2=\frac{225+400}{4}

or, A B^2=\frac{625}{4}

\therefore \quad \mathrm{AB}=\sqrt{\frac{625}{4}}=\frac{25}{2} \mathrm{~m}

\therefore \quad \text{Perimeter of} \mathrm{ABCD}=4 \times \mathrm{AB}

=4 \times \frac{25}{2} \\

=50 \mathrm{~m} \text { (Ans.) }

\therefore \quad Area of Rhombus ABCD =150 Sq.m

\therefore \quad Base \times height =150

or, \frac{25}{2} \times height ^2=150

or, \frac{\text { height }}{2}=6

\therefore height =12 \mathrm{~m} (Ans.)

Question 7

If perimeter of a rhombus is 440 meter and distance between two parallel sides are 22 meter, Let us write by calculating the area of shape of rhombus.

Solution

0B3300B0 A01B 4AAD BB90 319DE9D68D94

\text { Side of Rhombus } =\frac{\text { Perimeter }}{4} \\

=\frac{440}{4} \\

=110 \mathrm{~m}

\therefore Base \mathrm{CD} \text{of Rhombus} \mathrm{ABCD}=110 \mathrm{~m}

\therefore Distance between two parallel sides = Altitude AE

\therefore \quad \text { Area of the Rhombus } =\text { Base } \times \text { Altitude } \quad=22 \mathrm{~m} \\

=\mathrm{CD} \times \mathrm{AE} \\

=110 \times 22 \text { Sq.m } \\

=2420 \text { Sq.m (Ans.) }

Question 8

If perimeter of a Rhombus is 20cm. and length of its one diagonal of its one diagonal is 6cm, then let us write by calculating the area of Rhombus.

Solution

IMG 3412

\text { Perimeter of Rhombus }=20 \mathrm{~cm} \\

\text { Side of a rhombus } =\frac{20}{4} \mathrm{~cm} \\

=5 \mathrm{~cm} .

Length of its one diagonal = 6cm.

Let B D=6 \mathrm{~cm}.

\mathrm{OB}=\frac{6}{2} \mathrm{~cm}=3 \mathrm{~cm} . \\

AB = 5cm

In \triangle \mathrm{OAB}

\mathrm{OA}^2 =\mathrm{AB}^2-\mathrm{OB}^2 \\

\mathrm{OA}^2 =(5)^2-(3)^2 \\

\text { or, } \mathrm{OA}^2 =25-9

or, \mathrm{OA}^2=16

or, \mathrm{OA}=\sqrt{16}

\therefore \mathrm{OA} =4 \mathrm{~cm} \\

\mathrm{AC} =2 \times \mathrm{OA} \\

=2 \times 4 \mathrm{~cm}=8 \mathrm{~cm}

\text { Area of rhombus } \mathrm{ABCD} =\frac{1}{2} \times \mathrm{BD} \times \mathrm{AC} \\

=\frac{1}{2} \times 6 \times 8 \text { Sq.cm. } \\

=24 \text { Sq.cm. (Ans.) }

Question 9

The area of field shaped in trapeziuim is 1400 sq.dcm. If the perpendicular distance between two parallel sides are 20dcm. and the length of two parallel sides are in the ratio 3 : 4, then let us write by calculating the lengths of two sides.

Solution

IMG 3414

\text { Let } \mathrm{AE}=20 \mathrm{dm} \\

\mathrm{AD}=3 \mathrm{x} \\

\mathrm{BC}=4 \mathrm{x} \\

\text { trapazium }=1400 \text { Sq.cm }

Area of trapazium = 1400 Sq.cm

\text { or } \quad \frac{1}{2}(\mathrm{AD}+\mathrm{BC}) \times \mathrm{AE}=1400 \\

\text { or } \quad \frac{1}{2}(3 \mathrm{x}+4 \mathrm{x}) \times 20=1400

7x = 1400

x=\frac{140}{7} \\

\therefore \quad x = 20

\therefore \quad A D=3 x=3 \times 20 \mathrm{dcm} .=60 \mathrm{dcm} \\

\quad \mathrm{BC}=4 \mathrm{x}=4 \mathrm{x} \times 20 \mathrm{dcm} .=80 \mathrm{dcm} \text {. (Ans.) }

Question 10

Let us write by calculating the area of regular hexag field of which length of sides is 8cm

Solution

E4D1ABFD CED0 44B2 A9CD 806BD691FB95

If we draw diagonals we get equal six equilater triangles.

Area of \triangle A O B

=\frac{\sqrt{3}}{4}(\text { Side })^2 \\

=\frac{\sqrt{3}}{4}(8)^2 \\

=\frac{\sqrt{3}}{4} 64 \\

=16 \sqrt{3} \mathrm{Sq} \cdot \mathrm{cm} .

\text { Area of Hexagon } \mathrm{ABCDEF} =6 \times 16 \sqrt{3} \\

=96 \sqrt{3} \text { Sq. } \mathrm{cm} \text {. }(Ans.)

Question 11

In a quadrilateral ABCD, AB = 5 meter, BC = 12 meter, DA = 15 meter and \angle A B C=90^{\circ}, Let us write by calculating the area of quadrilateral shape of field.

Solution

889E8FE8 342E 4E42 9BC8 36813B8546E5

\text { Let } A B=5 \mathrm{~m}, B C=12 \mathrm{~m} \text {, } \\

C D=14 \mathrm{~m}, \mathrm{DA}=15 \mathrm{~m} \text {, } \\

\therefore \angle A B C=90^{\circ} \\

\text { or, } A C^2=\sqrt{\mathrm{AB}^2+B C^2} \\

=\sqrt{(5)^2+(12)^2} \text {. } \\

=\sqrt{25+144} \\

=\sqrt{109} \\

=13 \mathrm{~m} \\

\therefore \text { Area of } \triangle \mathrm{ABC} =\frac{1}{2} \times 12 \times 5 \\

=30 \mathrm{Sq} . \mathrm{cm}

\text { Let } a=13 \mathrm{~m}, b=14 \mathrm{~m}, \mathrm{c}=15 \mathrm{~m}

s=\frac{a+b+c}{2} \\

s=\frac{13+14+15}{2}=\frac{42}{2}=21 \mathrm{~m}

Area of \triangle A C D=\sqrt{s(s-a)(s-b)(s-c)}

=\sqrt{21(21-13)(21-14)(21-15)} \\

=\sqrt{21 \times 8 \times 7 \times 6} \\

=\sqrt{3 \times 7 \times 2 \times 2 \times 2 \times 7 \times 2 \times 3} \\

=2 \times 2 \times 3 \times 7 \mathrm{Sq} \cdot \mathrm{m} \\

=84 \text { Sq.cm. }

\text { Area of Quadrilateral } A B C D=(3+84) \text { Sq.m. } \\

=114 \text { Sq.m (Ans.) } \\

Question 12

Sahin draws a trapezium ABCD of which length of diagonal BD is 11cm, and draws two perpendiculars of which length are 5cm and 11cm respectively from the points A and C on the diagonal BD. Let us write by calculating the area of ABCD in the shape of trapezium.

Solution

IMG 3416

\text { Let, } \mathrm{BD} =11 \mathrm{~cm}, \\

\mathrm{AE} =5 \mathrm{~cm} \\

\mathrm{CF} =11 \mathrm{~cm}

\text { Area of } \triangle \mathrm{ABD}=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AE} \\

=\frac{1}{2} \times 11 \times 5 \\

=\frac{\jmath \rho}{2} \text { Sq.cm } \\

\text { Area of } \triangle B C D=\frac{1}{2} \times B D \times C F \\

= \frac{1}{2} \times 11 \times 11 \\

=\frac{121}{2} \text { Sq.cm } \\

Area of Trapezium ABCD

=\text { Area of } \triangle A B D+\text { Area of } \triangle B C D

=(\frac{55}{2}+\frac{121}{2}) \text { Sq.cm } \\

=\frac{176}{2} \\

=88 \mathrm{Sq} . \mathrm{cm} \text { (Ans.) }

Question 13

ABCDE is a petagon of which side BC is parallel to diagonal AD, EP is perpendicular on BC and EP intersects AD at the point Q. BE = 7 cm, AD = 13cm, PE = 9cm. and if PQ =\frac{4}{9} PE, Let us write by calculating the area of \ABCDE in shape of pentagon.

Solution

IMG 3417

\text { Let } P Q=\frac{4}{9}+PE= \frac{4}{9} \times 9cm \\

= 4cm

\therefore \quad \mathrm{QE}=(9-4) \mathrm{cm} .=5 \mathrm{~cm} \\

\text { Now, } \because A D \| B C \text { and } E P \perp B C \\

\therefore \mathrm{EQ} \perp \mathrm{AD} \\

\therefore \text { Area of pentagon } A B C D E \\

=\text { Area of } \triangle \mathrm{ADE}+\text { Area of trapezium } \mathrm{ABCD} \\

=\frac{1}{2} \times \mathrm{AD} \times \mathrm{QE}+\frac{1}{2} \times(\mathrm{AD}+\mathrm{BC} ) \times \mathrm{PQ} \text { Sq.unit. } \\

=\frac{1}{2} \times 13 \times 5+\frac{1}{2} \times(13+7) \times 4 \text { Sq.unit. } \\

=(32.5+40) \cdot \mathrm{Sq} \cdot \mathrm{cm} \\

=72.5 \text { Sq.cm } \\

Question 14

The length of rhombus is equal to length of a square and is 40 \sqrt{2} \mathrm{~cm}. If the length of diagonals of a rhombus are in the ratio 3 : 4, Then let us write by calculating the area of a field in the shape of rhombus

Solution

IMG 3412

Let ‘ a ‘ be the side of a square and also a side of a rhombus. The side of a rhombus.

The length of diagonal = 40 \sqrt{2} \mathrm{~cm}. or, a \sqrt{2}=40 \sqrt{2}\\

\therefore \quad a=40, \therefore \mathrm{CD}=40 \mathrm{~cm} \text {. }\\

Let \mathrm{AC}=3 \mathrm{x}, \mathrm{BD}=4 \mathrm{x}\\

\mathrm{OC}=\frac{3 \mathrm{x}}{2}, \mathrm{OD}=\frac{4 \mathrm{x}}{2} 2 \mathrm{x}\\

In \triangle \mathrm{COD}\\

O C^2+O D^2=C D^2\\

(\frac{3 x}{2})^2+(2 x)^2=(40)^2\\

or, \frac{9 x^2}{4}+4 x^2=1600\\

or, \frac{9 x^2+16 x^2}{4}=1600\\

or, \frac{25 x^2}{4}{ }^2=1600\\

or, 25 \mathrm{x}^2=1600 \times 4\\

or, x^2=\frac{1660 \times 4}{25}{ }^2\\

or, x^2=64 \times 4\\

\therefore x^2 =\sqrt{64 \times 4} \\

=8 \times 2=16\\

\therefore \quad x =16\\

\mathrm{AC}=3 x=3 \times 16 \mathrm{~cm}=48 \mathrm{~cm} \\

\mathrm{BD}=4 \mathrm{x}=4 \times 16 \mathrm{~cm}=64 \mathrm{~cm} .\\

\text { Area of Rhombus }\mathrm{ABCD} =\frac{1}{2} \times \mathrm{AC} \times \mathrm{BD} \\

=\frac{1}{2} \times 48 \times 64 \\

=1536 \text { Sq.cm. } (Ans.)

Question 15

In a trapezium, the length of each slant sides is 10cm, and the length of parallel sides are 5cm. and 17cm. respectively. Let us write by calculating the area of field in shape of trapazium and its diagonal.

Solution

IMG 3419

Let \mathrm{AB}=\mathrm{CD}=10 \mathrm{~cm}

A D=5 \mathrm{~cm} \\

B C=17 \mathrm{~cm} \\

A D \| B C \text { and } A B=C D \\

A D=E F=5 \mathrm{~cm}

\therefore A D \| B C and A B=C D

\therefore A D =E F=5 \mathrm{~cm} . \\

\therefore \mathrm{BF} =\mathrm{CE}=\frac{17-5}{2}=\frac{12}{2} \mathrm{~cm}=6 \mathrm{~cm}

In \triangle \mathrm{ABF}

\mathrm{AF} =\sqrt{\mathrm{AB}^2-\mathrm{BF}^2} \\

=\sqrt{(10)^2-(6)^2} \\

=\sqrt{100-36} \\

=\sqrt{64} \\

=8 \\

\therefore \quad A F =8 \mathrm{~cm} . \quad \therefore \quad \mathrm{DE}=\mathrm{AF}=8 \mathrm{~cm}.

And BE = BF + EF = (6 + 5)cm =11cm (Ans.)

Area of Trapazium ABCD

=\frac{1}{2} \times(\mathrm{AD}+\mathrm{BC}) \times \mathrm{AF} \\

=\frac{1}{2} \times(5+17) \times 8 \\

=\frac{1}{2} \times 22 \times 8 \\

=88 \text { Sq. } \mathrm{cm}

In \triangle \mathrm{BED}

\mathrm{BD}=\sqrt{\mathrm{DE}^2+\mathrm{BE}^2}

or, \mathrm{BD}=\sqrt{(8)^2+(11)^2}

or, \mathrm{BD}=\sqrt{64+121}

or, \mathrm{BD}=\sqrt{64+121}

\therefore \mathrm{BD}=\sqrt{185} cm.

\therefore Length of diagonal =\sqrt{185 cm}. (Ans.)

Question 16

The length of parallel sides of a trapezium are 19cm. and 9cm. and length of slant sides are 8cm and 6cm. Let us calculate the area of the field in the shape of trapezium.

Solution

IMG 3420

Let \mathrm{AD}=9 cm

\mathrm{BC} =19 cm \\

\mathrm{AB} =8 cm \\

\mathrm{CD} =6 cm \\

\mathrm{BC} =\mathrm{BF}+\mathrm{FE}+\mathrm{CE} \\

=\mathrm{BF}+\mathrm{CE}+9 \\

\mathrm{BF} =19-9-\mathrm{CE} \\

=10-\mathrm{CE}

In \triangle \mathrm{ABF},

A B^2=A F^2+B F^2

or, (8)^2=A F^2+(10-C E)^2

In \triangle \mathrm{CDE}

\mathrm{CD}^2=\mathrm{DE}^2+\mathrm{CE}^2

or, (6)^2=\mathrm{AF}^2+\mathrm{CE}^2[\because \mathrm{DE}=\mathrm{AF}]

or, (6)^2=(8)^2-(10-C E)^2+C E^2

or, 36=64-\{(10)^2-2.10 . \mathrm{CE}+(\mathrm{CE})^2\}-(\mathrm{CE})^2

or, 36=64-(10)^2+20 \mathrm{CE}-\mathrm{CE}^2+\mathrm{CE}^2

or, 36=64-100+20 \mathrm{CE}

or, 20 \mathrm{CE}=36+36

or, 20 \mathrm{CE}=72

or, \mathrm{CE}=\frac{72}{20}

\text { or, } \mathrm{CE} =\frac{36}{10}=3.6 cm \\

\therefore \mathrm{DE} =\sqrt{\mathrm{CD}^2-\mathrm{CE}^2} \\

=\sqrt{(6)^2-(3.6)^2} \\

=\sqrt{(6+3.6)(6-3.6))} \\

=\sqrt{9.6 \times 2.4} \\

=\sqrt{4.8 \times 4.8} \\

= 4.8 cm

Area of Trapazium AECE

=\frac{1}{2} \times(\mathrm{AD}+\mathrm{BC}) \times \mathrm{DE} \\

=\frac{1}{2} \times(9+19) \times 4.8 \\

=\frac{1}{2} \times 28 \times 4.8 \\

=67.2 \text { Sq.cm. (Ans.) }


(M.C.Q)

Question 17 (i)

The of parallelogram is 1 / 3 th of its base. If the area of field is 192 sq.cm. in the shape of parallelogram, the height is

(a) 4 cm.

(b) 8 cm.

(c) 16 cm

(d) 24 cm

Solution

Area of parallelogram = 192 Sq.cm.

or, Base × height = 192

or, Base \times \frac{1}{3} base =192

or, (\text { Base })^2=476

or, Base =\sqrt{476}=24 cm.

\therefore \quad \text { Height } =\frac{1}{3} \times \text { base } \\

=\frac{1}{3} \times 24=8 cm .

\therefore (b) is correct option

Question 17 (ii)

If the length of one side of rhombus is 6 cm. and one angle is 60^{\circ}, then area of field in the shape of rhombus is

(a) 9 \sqrt{3} sq.cm

(b) 18 \sqrt{3} \mathrm{Sq} . \mathrm{cm}.

(c) 36 \sqrt{3} \mathrm{Sq} . \mathrm{cm}.

(d) 6 \sqrt{3} Sq.cm.

Solution

IMG 3456

\because \quad A B=B C=6 cm \\

\therefore \angle A B C = 60

\therefore \quad C is an equilateral triangle

\therefore \text { Area of } \triangle A B C=\frac{\sqrt{3}}{4} \times(6)^2 \\

=\frac{\sqrt{3}}{4} \times 36 \\

=9 \sqrt{3} \text { Sq.cm. } \\

\text { Area of rhombus } \mathrm{ABCD} =2 \times \triangle \mathrm{ABC} \\

=2 \times 9 \sqrt{3} \mathrm{Sq} \cdot \mathrm{cm} \\

=18 \sqrt{3} \mathrm{Sq} . \mathrm{sm}

\therefore \quad(b) is correct option

Question 17 (iii)

The length of one diagonal of rhombus is three times of another diagonal. If the area of field in the shape of rhombus is 96 sq.cm., then the length of long diagonal is

(a) 8 cm

(b) 12 cm

(c) 16 cm

(d) 24 cm.

Solution

IMG 3457

Let 1st diagonal =x

2nd diagonal = 3x

Area of Rhombus = 96 Sq.cm.

\frac{1}{2} \times x \times 3 x=96

or, \frac{3 x^2}{2}=96

or, x^2=64

or, x=\sqrt{64}=8

Length of long diagonal = 3 \mathrm{x} =3 \times 8 cm=24 cm.

\therefore \quad (d) is correct option

Question 17 (iv)

A rhombus and a square on the same base. If the area of square is x^2 Sq. unit and area of field in the shape of rhombus is y sq. unit. then

(a) y>x^2

(b) v<x^2

(c) y=x^2

Solution

\therefore (b) is correct option

Question 17 (v)

Area of a field in the shape of trapezium is 162 sq.cm. and height is 6 cm. If length of one side is 23 cm, then the length of other side is

(a) 29 cm

(b) 31 cm

(c) 32 cm

(d) 33 cm.

Solution

IMG 3422

We have,

DE = 6 cm,

AB = ?, CD = 23 cm,

Area of trapazium =162 \mathrm{Sq} . \mathrm{cm}.

or, \frac{1}{2} \times(\mathrm{AB}+\mathrm{CD}) \times \mathrm{DE}=162

or, \frac{1}{2} \times(\mathrm{AB}+23) \times 6=162

or, \mathrm{AB}+23=54

or, \mathrm{AB}=54-23

\therefore \quad AB = 31cm.[/katex]

\therefore (b) is correct option

Short answer type:

Question 18 (i)

Area of field in the shape of parallelogram ABCD 96 sq.cm., length of diagonal BD is 12 cm: What is the perpendicular length drawn on diagonal BD from the point A?

Solution

3C4A3962 088B 45A4 920D 724C877C98E7

Area of parallelogram ABCD = 96 sq. cm.

\mathrm{cm} \therefore Area of \bigtriangleup ABD = \frac{96}{2} Sq.cm.

=48 \text { Sq. } \mathrm{cm}

or, \frac{1}{2} \times \mathrm{AE} \times \mathrm{BD}=48

or, \frac{1}{2} \times \mathrm{AE} \times 12=48

\therefore \quad \mathrm{AE}=8 cm \quad (Ans.)

Question 18 (ii)

The length of adjacent sides of a parallelogram are 5 cm and 3 cm. If the distance between the longer side 2 cm. Find the distance between the smaller sides.

Solution

25D6B7BA E785 4683 BD29 95C7C45992AD

\text { Let } AB \& = CD=3 cm . \\

AD = BC = 5 cm

AF = 2 cm

Area of \triangle \mathrm{ABD} =\frac{1}{2} \times \mathrm{AB} \times \mathrm{DE} \\

=\frac{1}{2} \times 3 \times \mathrm{DE} \\

=\frac{3}{2} \mathrm{DE}

Area of parallelogram ABCD

=2 \times \frac{3}{2} \times \mathrm{DE}=3 \times \mathrm{DE}

\therefore \text{Area of the parallelogram} \mathrm{ABCD} =\mathrm{BC} \times \mathrm{AF} \\

=5 cm \times 2 cm \\

=10 \mathrm{Sq} . \mathrm{cm} . \\

\therefore \quad 3 \times \mathrm{DE} =10 \\

\text { or, } \quad \mathrm{DE} =\frac{10}{3} \\

\therefore \quad \mathrm{DE} =3 \frac{1}{3} cm \text { (Ans.) }

Question 18 (iii)

Length of height of rhombus is 14 cm . and length of side is 5 cm. What is the area of field in the in the shape of rhombus?

Solution

\text { Area of rhombus } =\text { Base } \times \text { Height } \\

=5 cm \times 14 cm . \\

=70 \mathrm{Sq} . \mathrm{cm} .

\text { (Ans.) }

Question 18 (iv)

Any adjacent parallel sides of trapeziun makes an angle 45^{\circ} and length of its slant side is 62 cm, What is the distance between two parallel sides?

Solution

IMG 3424

Let \mathrm{AB}=62, cm

\angle \mathrm{ABE}=\angle \mathrm{EAB}=45^{\circ}

AE = Height of trapezium

We have,

\mathrm{AE}^{2}+\mathrm{BE}^{2}=\mathrm{AB}^{2}

or, \mathrm{AE}^{2}+\mathrm{AE}^{2}=(62)^{2} \quad[\because \mathrm{BE}=\mathrm{AE}]

or, 2 \mathrm{AE}^{2}=(62)^{2}

or, \mathrm{AE}^{22}=\frac{(62)^{2}}{2}

\text { or, } \mathrm{AE} =\frac{(62)^{2}}{4} \times 2 \\

\text { or, } \mathrm{AE} =\sqrt{\frac{(62)^{2}}{4} \times 2} \\

\text { or, } \mathrm{AE} =\frac{62}{2} \times \sqrt{2} \\

=31 \sqrt{2} cm

\therefore Distance between two parallel sides = 31 \sqrt{2} cm (Ans.)

Question 18 (v)

In parallelogram ABCD, AB = 4 cm, BC = 6 cm, and \angle A B C=30^{\circ} find the area of field in the shape of parallelograin ABCD.

Solution

IMG 3425

\mathrm{AB}=4 cm, \mathrm{BC}=6 cm

We draw perpendicular

AE on BC

Then, \angle B A E=60^{\circ} ,

\angle \mathrm{AEB}=90^{\circ}, \angle \mathrm{ABE}=30^{\circ}

In a right angled triangle, If the angles are 90^{\circ}, 60^{\circ} \ 30^{\circ}, then,

\mathrm{AE} =\frac{1}{2} \mathrm{AB} \\

=\frac{1}{2} \times 4 cm=2 cm

\therefore \text { Area of parallelogram } =\text { Base } \times \text { altitude } \\

=\mathrm{BC} \times \mathrm{AE} \\

=6 \times 2 \mathrm{Sq} \cdot \mathrm{cm}. \\

=12 \mathrm{Sq} . \mathrm{cm} . \text { (Ans.) }

Was this helpful ?

Close Menu
Index