Flash Education

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
post
question

Differentiation Formula

Diferentiation Formula

Basic Rule

Constant Rule
\frac{d(c)}{dx}=0;    c = constant
Power Rule
\frac{d(x)}{dx}=1\frac{d(cx)}{dx}=c×1
\frac{d(x^n)}{dx}=nx^{n-1}\frac{d(cx^n)}{dx}=c×nx^{n-1}
Exponential Function
\frac{d(e^x)}{dx}=e^x\frac{d(e^{mx})}{dx}=me^{mx}
\frac{d(a^x)}{dx}=a^xloga\frac{d(a^{mx})}{dx}=ma^{mx}loga
Logarithmic Function
\frac{d(logx)}{dx}={1\over x}\frac{d(logmx)}{dx}={1\over x}
Product RuleQuotient Rule
\frac{duv}{dx}=u \frac{dv}{dx}+v \frac{du}{dx} \frac{d{u\over v}}{dx}={v \frac{du}{dx}-u \frac{dv}{dx}\over v^2}

Trigonometric Functions

\frac{d(sinx)}{dx}=cosx\frac{d(sinmx)}{dx}=mcosmx
\frac{d(cosx)}{dx}=-sinx\frac{d(cosmx)}{dx}=-msinmx
\frac{d(tanx)}{dx}=sec^2x\frac{d(tanmx)}{dx}=msec^2mx
\frac{d(secx)}{dx}=secxtanx\frac{d(secmx)}{dx}=msecmxtanmx
\frac{d(cotx)}{dx}=-cosec^2x\frac{d(cotmx)}{dx}=-mcosec^2mx
\frac{d(cosecx)}{dx}=-cosecxcotx\frac{d(cosecmx)}{dx}=-mcosecmxcotmx

Inverse Trigonometric Functions

\frac{d(sin^{-1}x)}{dx}={1\over \sqrt{1-x^2}}\frac{d(cos^{-1}x)}{dx}=-{1\over \sqrt{1-x^2}}
\frac{d(tan^{-1}x)}{dx}={1\over 1+x^2}\frac{d(cot^{-1}x)}{dx}=-{1\over 1+x^2}
\frac{d(sec^{-1}x)}{dx}={1\over |x|\sqrt{1-x^2}}\frac{d(cosec^{-1}x)}{dx}=-{1\over |x|\sqrt{1-x^2}}

≫ You May Also Like

Close Menu
error: Content is protected !! 💀
Index