Question

A large truck and a car, both moving with a velocity of magnitude v, have a headon collision and both of them come to a halt after that. If the collision lasts for 1s: (a) Which vehicle experiences the greater force of impact? (b) Which vehicle experiences the greater change in momentum? (c) Which vehicle experiences the greater acceleration? (d)Why is the car likely to suffer more damage than the truck?

WhatsApp

Answer

Let the mass of the truck be M and that of the car be m.

Thus, M > m

Initial velocity of both vehicles, v

Final velocity of both vehicles, v‘ = 0 (since the vehicles come to rest after collision)

Time of impact, t = 1 s

(a) From Newton’s second law of motion, the net force experienced by each vehicle is given by the relation:

force truck formula

Since the mass of the truck is greater than that of the car, it will experience a greater force of impact.

(b) Initial momentum of the car = mv

Final momentum of the car = 0

Change in momentum = mv

Initial momentum of the truck = Mv

Final momentum of the truck = 0

Change in momentum = Mv

Since the mass of the truck is greater than that of the car, it will experience a greater change in momentum.

(c) From the first equation of motion, acceleration produced in a system is independent of the mass of the system. The initial velocity, the final velocity, and the time of impact remain the same in both cases. Hence, both the car and the truck experience the same amount of acceleration.

(d) According to Newton’s third law of motion, for every action there is an equal and opposite reaction that acts on different bodies. Since the truck experiences a greater force of impact (action), this larger

 

Was this answer helpful?

Didn't liked the above answer ?

Text Generation Tool

💡 Some Related Questions

force and laws of motion

Akhtar, Kiran and Rahul were riding in a motor car that was moving with a high velocity on an expressway when an insect hit the windshield and got stuck on the windscreen. Akhtar and Kiran started pondering over the situation. Kiran suggested that the insect suffered a greater change in momentum as compared to the change in momentum of the motorcar (because the change in the velocity of the insect was much more than that of the motorcar). Akhtar said that since the motorcar was moving with a larger velocity, it exerted a larger force on the insect. And as a result the insect died. Rahul while putting an entirely new explanation said that both the motorcar and the insect experienced the same force and a change in their momentum. Comment on these suggestions.

Open Answer »
force and laws of motion

Mass of one of the objects, m1 = 1.5 kg Mass of the other object, m2 = 1.5 kg Velocity of m1 before collision, v1 = 2.5 m/s Velocity of m2, moving in opposite direction before collision, v2 = -2.5 m/s (Negative sign arises because mass m2 is moving in an opposite direction) After collision, the two objects stick together. Total mass of the combined object = m1 + m2 Velocity of the combined object = v According to the law of conservation of momentum: Total momentum before collision = Total momentum after collision m1v1 + m2 v2 = (m1 + m2) v 1.5(2.5) + 1.5 (-2.5) = (1.5 + 1.5) v 3.75 – 3.75 = 3 v v = 0 Hence, the velocity of the combined object after collision is 0 m/s.

Open Answer »