Solution of Triangles Formula

Solution of Triangle
WhatsApp

Basic Rules of Triangle

Semi-perimeter = a+b+c\over 2

(i) Sine Rule : sin\ A\over a=sin\ B\over b=sin\ C\over c=1\over 2R

where R is the radius of the circumcircle of ΔABC

(ii) Cosine Rule :

  • cos A = b^2+c^2-a^2\over 2bc
  • cos B = a^2+c^2-b^2\over 2ac
  • cos C = a^2+b^2-c^2\over 2ab

(iii) Projection Rule

  • a = b cos C + c cos B
  • b = c cos A + a cos C
  • c = a cos B + b cos A

(iv) Napier’s Analogy

  • tanB-C\over 2=b-c\over b+ccot A\over 2
  • tanC-A\over 2=c-a\over c+acot B\over 2
  • tanA-B\over 2=a-b\over a+bcot C\over 2

Half Angles of T. Ratio

sinA\over 2= \sqrt{(s-b)(s-c)\over bc} cosA\over 2= \sqrt{s(s-a)\over bc}
sinB\over 2= \sqrt{(s-c)(s-a)\over ac} cosB\over 2= \sqrt{s(s-b)\over ac}
sinA\over 2= \sqrt{(s-a)(s-b)\over ab} cosC\over 2= \sqrt{s(s-c)\over ab}

Area of a Triangle

Consider a triangle of sides a, b and d.

(i) Δ = ½ bc sin A = ½ ca sin B = ½ ab sin C

(ii) Δ = c^2 sin A sin B\over 2 sin C

(iii) Δ = a^2 sin B sin C\over 2 sin A

(iv) Δ = b^2 sin C sin A\over 2 sin B

(v) Δ = \sqrt{s(s-a)(s-b)(s-c)}

where, a+b+c\over 2

≫ You May Also Like